
Published on LabJack (https://labjack.com)

Home > Support > Software & Driver > API Documentation > Direct Modbus TCP

Direct Modbus TCP
Log in or register to post comments

Introduction

Modbus is a simple and common protocol used in industrial environments. We specifically use Modbus TCP, which sends Modbus packets via TCP/IP.

LabJack devices that speak Modbus are Modbus TCP Servers. Software or devices that can act as a Modbus TCP Client, can talk directly to a Modbus
Server over a TCP/IP connection such as Ethernet or WiFi. We do not know of any clients that can speak Modbus TCP over USB.

Modbus TCP/UDP is the only protocol used by the T4 and T7. Even the LJM library is using Modbus packets under-the-hood for all communication with
these devices. That said, our high-level LJM library uses a couple features that are not "standard" Modbus. These features are an option for anyone
using Modbus in their own application, but for standard COTS Modbus clients these features are likely not an option:

Spontaneous Stream Data - When our LJM library starts a stream, it launches a background thread that is constantly listening for incoming data
from the device such that the device can spontaneously send data packets at any time without being asked for each data packet. The data
packets are formed as Modbus TCP packets, but sending them spontaneously is not standard and would not be supported by any COTS
Modbus clients. Command-response stream is an option, but still would not work with any COTS Modbus clients.
Feedback Function (MBFB) - This is a custom function we have defined that is very efficient, and in particular allows writes and reads in the same
packet. No COTS Modbus client will support this proprietary function, but all the same things can be done with separate standard write and read
functions.

The U3, U6, and UE9 have limited Modbus support, and for full functionality use a proprietary low-level protocol described in Section 5 of each datasheet.

Getting Started

The T7 and T4 have five test registers that should be used before trying to read/write to other registers. This will help in trying to debug any getting-
started related issues with addressing or bit-wise (byte-flipping) issues.

Modbus Client Applications

Available Modbus TCP/UDP client applications.

Example Code

Available modbus TCP/UDP library examples are on our examples page.

Modbus Map

The Modbus Map defines the address and name of all registers, along with other information. This section has a dynamic map that allows you to filter
and search.

Protocol Details

Lengthy (and confusing) detail about Modbus TCP can be found at modbus.org, but all the information actually needed is covered in this section.

UD Modbus (Old)

The U3, U6, and UE9 implemented a deprecated Modbus system called UD Modbus.

Getting Started
Log in or register to post comments

Modbus - Getting Started [referenceable]

To get started with direct Modbus TCP, first try writing & reading to/from the test registers.

See the Examples section on the Modbus Protocol Details page.

If using COTS Modbus Client software, keep the following in mind:

19 May 2019

https://labjack.com
https://labjack.com/
https://labjack.com/support
https://labjack.com/support/software
https://labjack.com/support/software/api
https://labjack.com/user/login?destination=node/1908%23comment-form
https://labjack.com/user/register?destination=node/1908%23comment-form
https://labjack.com/support/software/api/modbus/getting-started
https://labjack.com/support/software/modbus-client-applications
https://labjack.com/support/software/examples/modbus
https://labjack.com/support/software/api/modbus/modbus-map
https://labjack.com/support/software/api/modbus/protocol-details
http://modbus.org/
https://labjack.com/support/software/api/modbus/ud-modbus
https://labjack.com/user/login?destination=node/1910%23comment-form
https://labjack.com/user/register?destination=node/1910%23comment-form
https://labjack.com/modbus-getting-started-referenceable
https://labjack.com/support/modbus/protocol-details
https://labjack.com/support/modbus/clients
https://labjack.com/support/software/modbus-client-applications
https://labjack.com/support/software/examples/modbus

The LabJack is a Modbus TCP Server. A Modbus TCP Client can send a command to the LabJack and get back a response. Sometimes a Server
is called the Slave and a Client is called the Master.
We use a single register map with addresses from 0 to 65535. Each address points to a 16-bit value that might be readable, writable, or both.
The meaning of the registers are defined in our Modbus Map.
Use function 3, 4, 6, or 16. Choose "Holding" if needed.

If you don't have a better way to see the bytes written and read for each packet, you can use Wireshark to get a TCP capture.

Test Registers
Name Start Address Type Access Default

TEST 55100 UINT32 R 1122867

TEST_UINT16 55110 UINT16 R/W 17

TEST_UINT32 55120 UINT32 R/W 1122867

TEST_INT32 55122 INT32 R/W -2003195205

TEST_FLOAT32 55124 FLOAT32 R/W -9999.0

TEST

A read of this test register should always return 0x00112233 or d1122867. If your software has the word swap quirk, you will incorrectly read 0x22330011 or 573767697. If your
software has the address-1 quirk, a UINT16 (1-register) read from 55101 will incorrectly return 0x0011 (should read 0x2233).

TEST_UINT16

Write a value and read back to test UINT16 operation. Default is 0x0011 or d17.

TEST_UINT32

Write a value and read back to test UINT32 operation. Default is 0x00112233 or d1122867. If your software has the word swap quirk, the default will incorrectly read
0x22330011 or 573767697.

TEST_INT32

Write a value and read back to test INT32 operation. Default is 0x8899AABB or d-2003195205. If your software has the word swap quirk, the default will incorrectly read
0xAABB8899 or -1430550375.

TEST_FLOAT32

Write a value and read back to test FLOAT32 operation. Default is 0xC61C3C00 or -9999.0. If your software has the word swap quirk, the default will incorrectly read
0x3C00C61C or 0.00786.

Modbus Client Applications
Log in or register to post comments

Modbus Client Applications

LabJacks with Modbus support follow the standard, so any Modbus TCP Client should be able to talk to our devices. See the Protocol Details page for
everything you need to know about Modbus TCP on a LabJack, but here are a few highlights:

The LabJack is a Modbus TCP Server. A Modbus TCP Client can send a command to the LabJack and get back a response. Sometimes a Server
is called the Slave and a Client is called the Master.
We use a single register map with addresses from 0 to 65535. Each address points to a 16-bit value that might be readable, writable, or both.
The meaning of the registers are defined in our Modbus Map.
Use function 3, 4, 6, or 16. Choose "Holding" if needed.

Common quirks to watch for with Modbus Clients:

1. The client subtracts 1 from all addresses. You tell the client you want to read address 2000, but the client puts 1999 in the actual packet. That
means if you want to read address 2000, you have to tell the client 2001. This seems to be an attempt to give the user addresses that go from 1-
65536 rather than 0-65535. We use 0-65535 addressing. If you want to read address 2000, then 2000 should be in the packet.

2. The software flips the order of the words within a 32-bit value. For example, a read of TEST should return 0x00112233, but the client returns
0x22330011.

3. The software says it is adding 40000 to the addresses, but if you look at the actual packet it is not. For example, if you ask the software to read
from 2000, it will say it is reading from 42000, but in the actual Modbus packet it specifies address 2000. Does not seem to cause problems, but
can be confusing.

General Modbus Information

More getting started information and general Modbus resources can be found on the Modbus API Documentation page.

Open PLC (Free, Open Source)

19 May 2019

https://labjack.com/support/modbus/map
http://www.wireshark.org/
https://labjack.com/user/login?destination=node/3317%23comment-form
https://labjack.com/user/register?destination=node/3317%23comment-form
https://labjack.com/support/software/modbus-client-applications
https://labjack.com/support/modbus/protocol-details
https://labjack.com/support/modbus/map
https://labjack.com/support/software/api/modbus
https://labjack.com/support/software/api/modbus

Open PLC is an open source PLC software suite that has been built to function on an industrial and home automation level. It has been put together by a
PhD student Thiago Rodrigues Alves and according to his website consists of three parts: Runtime, Editor, and HMI builder. The HMI builder (ScadaBR)
portion of the project can be used to directly interface with LabJack T-Series devices. The other applications can also be used to utilize LabJack devices.

pvbrowser (Free, Open Source)

pvbrowser is an open source HMI/SCADA/DCS project whose code is available on GitHub. The project started in 2000 and is a fairly mature project that
enables users to create client-server architectured open source SCADA systems and HMIs. pvbrowser at its core is a client-server uses QT at its core to
enable users to create customized SCADA system servers (install the PV development package) that can connect to multiple Modbus TCP slave
devices, collect data, and then report data using their pvbrowser (client) application. Both the client and server portions can be run on multiple operating
systems: Windows, Linux, macOS, and others (downloads page). There is a great introductory example on their examples page. Essentially, go to their
downloads page, download the appropriate client application, and instruct it to connect to their demo server "pv://pvbrowser.org:5050.

ScadaBR (Free, Open Source)

ScadaBR is a project that started in 2006 and has been slowly working on an open source free software platform that communicates with Modbus TCP
devices and allows users to create customizable HMI screens tor Automation, Data Acquisition, and Supervisory Control applications. This application is
featured in the OpenPLC project, and has a v2.0 or an -LTS version in the works that looks quite promising.

Node-Red (Free, Open Source)

Node-RED is a powerful high-level GUI based programming language (much like LabVIEW) that can be run on a Raspberry Pi. Here is a good Raspberry
Pi + Node-RED + Modbus TCP + MQTT tutorial video on YouTube.

SCADA-LTS (Free and Paid, Open Source)

SCADA-LTS new and potentially up-and-coming SCADA application that is developed in Java, is open source, and features a GUI builder that may be
worth checking out.

PyScada (Free, Open Source)

PyScada is an open source application built using Python and features a modern HTML5 based HMI. It has very low hardware requirements for the
server and is completely open source. They have great documentation and their code is available on GitHub PyScada.

Infinite Automation (Paid, Contracted SCADA System Development)

Infinite Automation produces a Building Automation, Data Acquisition, IIoT, or SCADA application called Mango Automation that has a free version as
well as multiple paid option and advertises many great features from protocol choices to HMI pages and data logging. They also have an open source
Modbus library written in Java that can be downloaded free of charge from their website called Modbus4J.

mySCADA (paid, contracting available)

mySCADA produces a device agnostic SCADA system with a lot of options for logging, controlling, and HMI development. If you are looking for a
company to help you make a customized solution to automate your lab, factory, etc, take a look at this company and pair their application with powerful
T-Series DAQ devices.

IGSS (Free to 50 channels)

IGSS is an application produced by schneider electric that has a free version that supports up to 50 objects/tags and allows you to use a generic Modbus
TCP driver (ID:64) to collect data from generic PLC equipment like LabJack T-Series devices (T4,T7).

Advanced HMI (Custom HMI development, paid)

Advanced HMI is a company that produces industrial panel PCs that run windows and produces a free HMI software package that has support for

19 May 2019

http://www.openplcproject.com/
http://www.openplcproject.com/getting-started
http://www.openplcproject.com/reference-installing-scadabr
https://pvbrowser.de/pvbrowser/index.php?lang=en&menu=1
https://github.com/pvbrowser/pvb
https://pvbrowser.de/pvbrowser/index.php?lang=en&menu=6
https://pvbrowser.de/pvbrowser/index.php?lang=en&menu=3&left=1
http://www.scadabr.com.br/
https://nodered.org/
https://www.youtube.com/watch?v=fV78MQks6BI
http://scada-lts.org
https://pypi.org/project/PyScada/
http://pyscada.rtfd.io/
https://github.com/trombastic/PyScada
https://infiniteautomation.com/
https://infiniteautomation.com/mango-overview/
https://infiniteautomation.com/second-dropdown
https://infiniteautomation.com/modbus4j-open-source-modbus-library/
http://www.myscada.org/best-scada/
http://igss.schneider-electric.com/products/igss/index.aspx
http://igss.schneider-electric.com/products/igss/download/free-scada.aspx
http://igss.schneider-electric.com/products/igss/product-information/plc-drivers-supported/Scada-plc-driver-specification.aspx?Driver=64
https://labjack.com/products/t4
https://labjack.com/products/t7
http://www.advancedhmi.com

Modbus TCP devices. There is a simple video tutorial posted on their SourceForge page.

OpenSCADA

OpenSCADA Is project that has been around since 2006 and is maintained by some folks in Ukraine. It looks like they have had some active
development in 2018 and their SCADA software supports a large number of Linux distributions and single board computer hardware platforms.

OpenAPC

OpenAPC (Open Advanced Process Control) Is project that has been around for quite a while and offers a platform independent HMI/PLC/SCADA
application that runs on macOS, Windows, and Linux.

Simply Modbus TCP (Free and Paid Options, old school look)

Simply Modbus is a very simple Modbus TCP test and log program that has existed for many years. They have a webpage that describes Modbus TCP
(the protocol) and they have a free demo Modbus TCP Client application available and offer paid license options for going further.

Modbus Tools (Free and Paid)

Modbus Tools is another simple Modbus TCP test and log program/API suite that has existed for many years. They have a free demo available and offer
paid license options for going further. They offer a 3rd party option to our LJM library for a programmatic interface to Modbus TCP devices and they also
offer an Active X plugin for Excel.

TCP Modbus Examiner tool (Free, source code available)

The TCP Modbus Examiner tool is a simple tool that communicates with Modbus TCP devices developed using WPF that illustrates the simplicity and
usefulness of using the Modbus TCP protocol for data acquisition applications.

AzeoTech QuickMod (free download)

We got this to work easily. Do the following to start reading FIO0-FIO3:

Start => Programs => DAQFactory => Samples => QuickMod Modbus Scanner:

Select Modbus TCP over Ethernet.
Click Configure, set IP Address to the correct value, and set Port = 502.
Change Tag # = 2000.

Chipkin CAS Modbus Scanner (free download)

We got this to work easily, but noticed all 3 quirks above.

Steps to read FIO0-FIO3:

Add a TCP connection with proper IP and port 502.
Add a device with ID 1.
Add a request with Function #3, Offset=2001, and Length=4.
Go back to the main screen, select that task/request, and click "Poll".

Rockwell / Allen-Bradley PLC

A customer reported success with an EN2T module specifically, and others have reported success with Allen-Bradley PLCs in general. Reference
technote 470365 (from Rockwell Automation or Allen-Bradley).

19 May 2019

https://sourceforge.net/projects/advancedhmi/
http://oscada.org/main/download/
https://www.openapc.com/
http://www.simplymodbus.ca/TCPclient.htm
http://www.simplymodbus.ca/TCP.htm
http://www.simplymodbus.ca/TCPclient.htm
https://www.modbustools.com/
https://www.modbustools.com/modbus_wsmbt.html
https://www.modbustools.com/modbus_activex.html
http://www.minaandrawos.com/tcp-modbus-examiner-tool/
https://docs.microsoft.com/en-us/dotnet/framework/wpf/getting-started/walkthrough-my-first-wpf-desktop-application
http://www.azeotech.com/downloadqm.php
http://www.chipkin.com/products/software/modbus-software/cas-modbus-scanner/
https://rockwellautomation.custhelp.com/app/answers/detail/a_id/470365

Maple Systems 5070TH, Weintek MT8070iH, EasyBuilder Pro

A customer told us that the 5070TH and MT8070iH are the same HMI. EasyBuilder Pro software is a free download, and has a simulator that can be
used for testing. While helping the customer we did get EasyBuilder Pro to work ourselves, and made the following obscure notes for someone who
knows nothing about the software:

To change settings for the LabJack, go to Edit => System Parameters.
To change settings for the Numeric Display Object, click on it, then right-click and go to Attributes.
To make it go, click on On-Line Simulation.

We noticed that this client had quirks #1 and #2 from the list at the top of this page. To handle #2, EasyBuilder provides a function called SWAPW that
the customer used successfully.

Wonderware

A customer reported success with Wonderware. They reported that it had all 3 quirks from the list at the top of this page, and in fact they had to request
address 40001 to get it to read address 0.

More SCADA software can be found through google searches and these links:

Source Forge (SCADA)
A post on 14core.com's website about SCADA programs for your SBC
A post by Chipkin Automation containing a list of useful Modbus TCP tools.

Modbus Client Applications Table

Modbus Client Applications (T-Series)

Clients... Windows Mac Linux

AzeoTech QuickMod ✔

Chipkin CAS Modbus Scanner ✔

IntegraXor ✔

Maple Systems Web Studio SCADA ✔ ✔ ✔

Rockwell / Allen-Bradley PLC

TeslaSCADA2 ✔ ✔ ✔

Weintek EasyBuilder Pro ✔

Wonderware OPC Server ✔

More information about Modbus as well as some getting started information can be found on the Modbus API Documentation page.

Log in or register to post comments

Direct Modbus TCP Examples
Log in or register to post comments

Direct Modbus TCP

Direct Modbus TCP Overview

Because the T7 and T4 transmit all of their information using Modbus TCP, they are compatable with dozens of 3rd party libraries. If we don't support a
particular language required for an application, try searching for a Modbus TCP library that is compatible with your language of choice. The following is a
list of libraries that we have successfully used to communicate with our devices using Modbus TCP.

Getting Started

The T7 and T4 have five test registers that should be used before trying to read/write to other registers. This will help in trying to debug any getting-
started related issues with addressing or bit-wise (byte-flipping) issues.

Modbus Map

The Modbus Map defines the address and name of all registers, along with other information. This section has a dynamic map that allows you to filter
and search.

Direct Modbus API Documentation

T7, T4

19 May 2019

https://sourceforge.net/directory/science-engineering/scada/os:windows/
https://www.14core.com/top-free-open-source-scada-supervisory-control-and-data-acquisition-for-your-sbc-mcu/
https://store.chipkin.com/articles/modbus-can-you-give-me-a-list-of-useful-tools-and-applications-for-modbus
https://labjack.com/modbus-client-applications-table
https://labjack.com/products/t7
https://labjack.com/products/t4
https://labjack.com/products
http://www.azeotech.com/downloadqm.php
http://www.chipkin.com/products/software/modbus-software/cas-modbus-scanner/
https://www.integraxor.com
https://www.maplesystems.com/software/web-studio/software/
http://ab.rockwellautomation.com/
http://teslascada.com/index.php/en/products/teslascada2
https://www.weintek.com/globalw/Software/EasyBuilderPro.aspx
http://software.schneider-electric.com/wonderware/
https://labjack.com/support/software/api/modbus
https://labjack.com/user/login?destination=node/349%23comment-form
https://labjack.com/user/register?destination=node/349%23comment-form
https://labjack.com/user/login?destination=node/3318%23comment-form
https://labjack.com/user/register?destination=node/3318%23comment-form
https://labjack.com/support/software/examples/modbus
https://labjack.com/support/software/examples/modbus/getting-started
https://labjack.com/support/software/examples/modbus/modbus-map
https://labjack.com/support/software/api/modbus

For more information about LabJack's Direct Modbus implementation check out the API documentation section.

Modbus TCP Example Code Table

Modbus TCP Example Code Table (Referencable)

Direct Modbus TCP Example Code

Libraries... Windows Mac Linux

LabVIEW ✔ ✔ ✔

Node.js ✔ ✔ ✔

Python ✔ ✔ ✔

C/C++ (Streaming) ✔ ✔ ✔

To use a 3rd party Modbus program, such as a Rockwell/Allen Bradley application, there is no download - simply follow the instructions on the Modbus
Client Applications page.

More information about Modbus as well as some getting started information can be found on the Modbus API Documentation page. A list of the available
Modbus registers that the T7 supports is available on the Modbus Map page.

Log in or register to post comments

Modbus Map
Log in or register to post comments

3.1 Modbus Map [T-Series Datasheet]

Modbus Map Tool

Device: All Devices

Tags:

All Tags
AIN
AIN_EF
ASYNCH
CONFIG
CORE
DAC
DIO
DIO_EF
ETHERNET
FILE_IO

Expand addresses:

An error has occurred.

The filter and search tool above displays information about the Modbus registers of T-series devices.

Name: The string name that can be used with the LJM library to access each register.
Address: The starting address of each register, which can be used through LJM or with direct Modbus.
Details: A quick description of the register.

T7, T4

19 May 2019

https://labjack.com/content/modbus-tcp-example-code-table
https://labjack.com/modbus-tcp-example-code-table-referencable
https://labjack.com/products/t7
https://labjack.com/products/t4
https://labjack.com/products
https://labjack.com/support/software/examples/modbus/labview
https://labjack.com/support/software/examples/modbus/nodejs
https://labjack.com/support/software/examples/modbus/python
https://labjack.com/support/software/examples/modbus/c
https://labjack.com/support/software/modbus-client-applications
https://labjack.com/support/software/api/modbus
https://labjack.com/support/software/api/modbus/modbus-map
https://labjack.com/user/login?destination=node/352%23comment-form
https://labjack.com/user/register?destination=node/352%23comment-form
https://labjack.com/user/login?destination=node/1914%23comment-form
https://labjack.com/user/register?destination=node/1914%23comment-form
https://labjack.com/support/datasheets/t-series/communication/modbus-map

Type: Specifies the datatype, which specifies how many registers each value uses.
Access: Each register is readable, writable, or both.
Tags: Used to associate registers with particular functionality. Useful for filtering.

For the U3, U6 and UE9, see the deprecated Modbus system called UD Modbus.

For a printer-friendly version, see the printable Modbus map.

Also On This Page

0-Based Addressing
Single Overlapping Map of Addresses from 0-65535
Big-Endian
Data Type Constants
Sequential Addresses
ljm_constants.json

Usage

T-series devices are controlled by reading or writing Modbus registers as described on the Communication page.

Protocol

Modbus protocol is described on the Protocol Details page.

0-Based Addressing

The addresses defined in the map above are the same addresses in the actual Modbus packet, and range from 0 to 65535.

Some clients subtract 1 from all addresses. You tell the client you want to read address 2000, but the client puts 1999 in the actual Modbus packet. That
means if you want to read Modbus address 2000, you have to tell the client 2001. We use 0-65535 addressing everywhere, so if you want to read an
address we document as 2000, then 2000 should be in the Modbus packet.

Single Overlapping Map of Addresses from 0-65535

We have a single map of addresses from 0 to 65535. Any type of register can be located anywhere in that range regardless of data type or whether it is
read-only, write-only, or read-write.

Some client software uses addresses written as 4xxxx. In this case, the 4 is a special code that means to use the Modbus read function 0x03 and the
xxxx is an address from 0-9999 that might additionally have 1 subtracted before being put in the Modbus packet. The magic number of 40000 (or 40001)
has no mention in the Modbus spec that we can find. What this means in terms of how to talk to the LabJack depends on what exactly the client is doing,
but if you want to read from an address we have defined as x (0-65535), then x should be the address in the Modbus packet sent out over TCP.

Big-Endian

Modbus is specified as big-endian, which means the most significant value is at the lowest address. With a read of a 16-bit (single register) value, the 1st
byte returned is the MSB (most significant byte) and the 2nd byte returned is the LSB (least significant byte). With a read of a 32-bit (2 register) value,
the value is returned MSW then LSW, where each word is returned MSB then LSB, so the 4 bytes come in order from most significant to least significant.

We have seen some clients that expect Modbus to be implemented with big-endian bytes but with the least significant word before the most significant
word. In other words, the client software flips the order of the words within a 32-bit value. For example, a read of TEST (address 55100) should return
0x00112233, but the client returns 0x22330011.

Data Type Constants

Type Integer
Value

LJM_UINT16 0

LJM_UINT32 1

LJM_INT32 2

LJM_FLOAT32 3

LJM_BYTE 99

LJM_STRING 98

Sequential Addresses

19 May 2019

https://labjack.com/support/modbus/ud-modbus
https://labjack.com/support/software/api/modbus/modbus-map/printable
https://labjack.com/support/datasheets/t-series/communication
https://labjack.com/support/software/api/modbus/protocol-details

Many registers are sequentially addressed. The Modbus Map gives you the starting address for the first register, and then—depending on whether the
data type is 16-bits or 32-bits—you increment the address by 1 or 2 to get the next value:

Address = StartingAddress + 1*Channel# (UINT16)

Address = StartingAddress + 2*Channel# (UINT32, INT32, FLOAT32)

Note that the term "register" is used 2 different ways throughout documentation:

A "register" is a location that has a value you might want to read or write (e.g. AIN0 or DAC0).
The term "Modbus register" generally refers to the Modbus use of the term, which is a 16-bit value pointed to by an address of 0-65535.

Therefore, most "registers" consist of 1 or 2 "Modbus registers".

For example, the first entry in the Modbus Map has the name AIN#(0:254), which is shorthand notation for 255 registers named AIN0, AIN1, AIN2, ...,
AIN254. The AIN# data type is FLOAT32, so each value needs 2 Modbus registers, an thus the address for a given analog input is channel*2 .

ljm_constants.json

LabJack distributes a constants file called ljm_constants.json that defines information about the Modbus register map. The filter and search tool above pulls
data from that JSON file.

The ljm_constants GitHub repository contains up-to-date text versions of the Modbus register map:

JSON - ljm_constants.json
C/C++ header - LabJackMModbusMap.h

Log in or register to post comments

Printable Modbus Map
Log in or register to post comments

This page displays information from ljm_constants.json.

Analog Input Registers

Name Start
Address

Type Access

 AIN#(0:13) Returns the voltage of the specified analog input. 0 FLOAT32 R

 AIN#(0:13)_RANGE The range/span of each analog input. Write the highest expected input
voltage.

40000 FLOAT32 R/W

 AIN#(0:13)_NEGATIVE_CH Specifies the negative channel to be used for each positive channel.
199=Default=> Single-Ended.

41000 UINT16 R/W

 AIN#(0:13)_RESOLUTION_INDEX The resolution index for command-response and AIN-EF
readings. A larger resolution index generally results in lower noise and longer sample times.

41500 UINT16 R/W

 AIN#(0:13)_SETTLING_US Settling time for command-response and AIN-EF readings. 42000 FLOAT32 R/W

 AIN_ALL_RANGE A write to this global parameter affects all AIN. A read will return the correct
setting if all channels are set the same, but otherwise will return -9999.

43900 FLOAT32 R/W

 AIN_ALL_NEGATIVE_CH A write to this global parameter affects all AIN. Writing 1 will set all
AINs to differential. Writing 199 will set all AINs to single-ended. A read will return 1 if all AINs are set to
differential and 199 if all AINs are set to single-ended. If AIN configurations are not consistent 0xFFFF will be
returned.

43902 UINT16 R/W

 AIN_ALL_RESOLUTION_INDEX The resolution index for command-response and AIN-EF
readings. A larger resolution index generally results in lower noise and longer sample times. A write to this
global parameter affects all AIN. A read will return the correct setting if all channels are set the same, but
otherwise will return 0xFFFF.

43903 UINT16 R/W

 AIN_ALL_SETTLING_US Settling time for command-response and AIN-EF readings. A write to
this global parameter affects all AIN. A read will return the correct setting if all channels are set the same, but 43904 FLOAT32 R/W

19 May 2019

https://labjack.com/support/software/api/ljm/constants/ljmconstantsfile
https://github.com/labjack/ljm_constants
https://github.com/labjack/ljm_constants/blob/master/LabJack/LJM/ljm_constants.json
https://github.com/labjack/ljm_constants/blob/master/gen_output/LabJackMModbusMap.h
https://labjack.com/user/login?destination=node/3124%23comment-form
https://labjack.com/user/register?destination=node/3124%23comment-form
https://labjack.com/user/login?destination=node/594%23comment-form
https://labjack.com/user/register?destination=node/594%23comment-form

otherwise will return -9999. Max is 50,000 us.
Name Start

Address
Type Access

&print=true

DAC Registers

Name Start
Address

Type Access

 DAC#(0:1) Pass a voltage for the specified analog output. 1000 FLOAT32 R/W

&print=true

Digital I/O Registers

Name Start Address Type Access

 FIO#(0:7) Read or set the state of 1 bit of digital I/O. Also configures the direction to input or
output. Read 0=Low AND 1=High. Write 0=Low AND 1=High.

2000 UINT16 R/W

 EIO#(0:7) Read or set the state of 1 bit of digital I/O. Also configures the direction to input or
output. Read 0=Low AND 1=High. Write 0=Low AND 1=High.

2008 UINT16 R/W

 CIO#(0:3) Read or set the state of 1 bit of digital I/O. Also configures the direction to input or
output. Read 0=Low AND 1=High. Write 0=Low AND 1=High.

2016 UINT16 R/W

 MIO#(0:2) Read or set the state of 1 bit of digital I/O. Also configures the direction to input or
output. Read 0=Low AND 1=High. Write 0=Low AND 1=High.

2020 UINT16 R/W

 FIO_STATE Read or write the state of the 8 bits of FIO in a single binary-encoded value. 0=Low
AND 1=High. Does not configure direction. Reading lines set to output returns the current logic levels on the
terminals, not necessarily the output states written. The upper 8-bits of this value are inhibits.

2500 UINT16 R/W

 EIO_STATE Read or write the state of the 8 bits of EIO in a single binary-encoded value. 0=Low
AND 1=High. Does not configure direction. Reading lines set to output returns the current logic levels on the
terminals, not necessarily the output states written. The upper 8-bits of this value are inhibits.

2501 UINT16 R/W

 CIO_STATE Read or write the state of the 4 bits of CIO in a single binary-encoded value. 0=Low
AND 1=High. Does not configure direction. Reading lines set to output returns the current logic levels on the
terminals, not necessarily the output states written. The upper 8-bits of this value are inhibits.

2502 UINT16 R/W

 MIO_STATE Read or write the state of the 3 bits of MIO in a single binary-encoded value. 0=Low
AND 1=High. Does not configure direction. Reading lines set to output returns the current logic levels on the
terminals, not necessarily the output states written. The upper 8-bits of this value are inhibits.

2503 UINT16 R/W

 FIO_DIRECTION Read or write the direction of the 8 bits of FIO in a single binary-encoded value.
0=Input and 1=Output. The upper 8-bits of this value are inhibits.

2600 UINT16 R/W

 EIO_DIRECTION Read or write the direction of the 8 bits of EIO in a single binary-encoded value.
0=Input and 1=Output. The upper 8-bits of this value are inhibits.

2601 UINT16 R/W

 CIO_DIRECTION Read or write the direction of the 4 bits of CIO in a single binary-encoded value.
0=Input and 1=Output. The upper 8-bits of this value are inhibits.

2602 UINT16 R/W

 MIO_DIRECTION Read or write the direction of the 3 bits of MIO in a single binary-encoded value.
0=Input and 1=Output. The upper 8-bits of this value are inhibits.

2603 UINT16 R/W

 DIO#(0:22) Read or write the state of all digital I/O in a single binary-encoded value. 0=Low AND
1=High. Does not configure direction. A read of an output returns the current logic level on the terminal, not
necessarily the output state written. Writes are filtered by the value in DIO_INHIBIT.

2800 UINT32 R/W

 DIO_STATE Read or write the direction of all digital I/O in a single binary-encoded value. 0=Input
and 1=Output. Writes are filtered by the value in DIO_INHIBIT.

2850 UINT32 R/W

19 May 2019

 DIO_DIRECTION A single binary-encoded value where each bit determines whether _STATE,
_DIRECTION or _ANALOG_ENABLE writes affect that bit of digital I/O. 0=Default=Affected, 1=Ignored. 2900 UINT32 R/W
Name Start Address Type Access

&print=true

Digital Extended Features

Name Start Address Type Access

 DIO#(0:22)_EF_ENABLE 1 = enabled. 0 = disabled. Must be disabled during configuration. Note
that DIO-EF reads work when disabled and do not return an error.

44000 UINT32 R/W

 DIO#(0:22)_EF_INDEX An index to specify the feature you want. 44100 UINT32 R/W

 DIO#(0:22)_EF_OPTIONS Function dependent on selected feature index. 44200 UINT32 R/W

 DIO#(0:22)_EF_VALUE_A Function dependent on selected feature index. 44300 UINT32 R/W

 DIO#(0:22)_EF_VALUE_B Function dependent on selected feature index. 44400 UINT32 R/W

 DIO#(0:22)_EF_VALUE_C Function dependent on selected feature index. 44500 UINT32 R/W

 DIO#(0:22)_EF_VALUE_D Function dependent on selected feature index. 44600 UINT32 R/W

 DIO#(0:22)_EF_READ_A Reads an unsigned integer value. The meaning of the integer is
dependent on selected feature index.

3000 UINT32 R

 DIO#(0:22)_EF_READ_A_AND_RESET Reads the same value as DIO#(0:22)_EF_READ_A and
forces a reset.

3100 UINT32 R

 DIO#(0:22)_EF_READ_B Reads an unsigned integer value. The meaning of the integer is
dependent on selected feature index.

3200 UINT32 R

&print=true

Digital EF Clock Source

Name Start Address Type Access

 DIO_EF_CLOCK0_ENABLE 1 = enabled. 0 = disabled. Must be disabled during configuration. 44900 UINT16 R/W

 DIO_EF_CLOCK0_DIVISOR Divides the core clock. Valid options: 1,2,4,8,16,32,64,256. 44901 UINT16 R/W

 DIO_EF_CLOCK0_OPTIONS Bitmask: bit0: 1 = use external clock. All other bits reserved. 44902 UINT32 R/W

 DIO_EF_CLOCK0_ROLL_VALUE The clock will count to this value and then start over at zero.
The clock pulses counted are those after the divisor. 0 results in the max roll value possible. This is a 32-bit
value (0-4294967295) if using a 32-bit clock, and a 16-bit value (0-65535) if using a 16-bit clock.

44904 UINT32 R/W

 DIO_EF_CLOCK0_COUNT Current tick count of this clock. Will read between 0 and
ROLL_VALUE-1.

44908 UINT32 R

&print=true

SPI Registers

Name Start Address Type Access

 SPI_CS_DIONUM The DIO line for Chip-Select. 5000 UINT16 R/W

19 May 2019

 SPI_CLK_DIONUM The DIO line for Clock. 5001 UINT16 R/W

 SPI_MISO_DIONUM The DIO line for Master-In-Slave-Out. 5002 UINT16 R/W

 SPI_MOSI_DIONUM The DIO line for Master-Out-Slave-In. 5003 UINT16 R/W

 SPI_MODE The SPI mode controls the clock idle state and which edge clocks the data. Bit 1 is
CPOL and Bit 0 is CPHA, so CPOL/CPHA for different decimal values: 0 = 0/0 = b00, 1 = 0/1 = b01, 2 = 1/0 =
b10, 3 = 1/1 = b11. For CPOL and CPHA explanations, see Wikipedia article: <a target='_blank'
href='https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus'>https://e... style='margin-right: -1;'
src='https://ljsimpleregisterlookup.herokuapp.com/static/images/ui-icons-extl... />.

5004 UINT16 R/W

 SPI_SPEED_THROTTLE This value controls the SPI clock frequency. Pass 0-65535. Default=0
corresponds to 65536 internally which results in ~800 kHz. 65500 = ~100 kHz, 65100 = ~10 kHz, 61100 = ~1
kHz, 21000 = ~100 Hz, and 1 = ~67 Hz. Avoid setting too low such that the entire transaction lasts longer than
the 250 millisecond timeout of the internal watchdog timer.

5005 UINT16 R/W

 SPI_OPTIONS Bit 0 is Auto-CS-Disable. When bit 0 is 0, CS is enabled. When bit 0 is 1, CS is
disabled. Bit 1: 0 = Set DIO directions before starting the SPI operations, 1 = Do not set DIO directions. Bit 2: 0
= Transmit data MSB first, 1 = LSB first. Bits 4-7: This value sets the number of bits that will be transmitted
during the last byte of the SPI operation. Default is 8, valid options are 1-8.

5006 UINT16 R/W

 SPI_GO Write 1 to begin the configured SPI transaction. 5007 UINT16 W

 SPI_NUM_BYTES The number of bytes to transfer. 5009 UINT16 R/W

 SPI_DATA_TX Write data here. This register is a buffer. 5010 BYTE W

 SPI_DATA_RX Read data here. This register is a buffer. Underrun behavior - fill with zeros. 5050 BYTE R

Name Start Address Type Access

&print=true

I2C Registers

Name Start Address Type Access

 I2C_SDA_DIONUM The number of the DIO line to be used as the I2C data line. Ex: Writing 0 will
force FIO0 to become the I2C-SDA line.

5100 UINT16 R/W

 I2C_SCL_DIONUM The number of the DIO line to be used as the I2C clock line. Ex: Writing 1 will
force FIO1 to become the I2C-SCL line.

5101 UINT16 R/W

 I2C_SPEED_THROTTLE This value controls the I2C clock frequency. Pass 0-65535. Default=0
corresponds to 65536 internally which results in ~450 kHz. 1 results in ~40 Hz, 65516 is ~100 kHz.

5102 UINT16 R/W

 I2C_SLAVE_ADDRESS The 7-bit address of the slave device. Value is shifted left by firmware to
allow room for the I2C R/W bit.

5104 UINT16 R/W

 I2C_NUM_BYTES_TX The number of data bytes to transmit. Zero is valid and will result in a read-
only I2C operation.

5108 UINT16 R/W

 I2C_NUM_BYTES_RX The number of data bytes to read. Zero is valid and will result in a write-
only I2C operation.

5109 UINT16 R/W

 I2C_OPTIONS Advanced. Controls details of the I2C protocol to improve device compatibility. bit
0: 1 = Reset the I2C bus before attempting communication. bit 1: 0 = Restarts will use a stop and a start, 1 =
Restarts will not use a stop. bit 2: 1 = disable clock stretching.

5103 UINT16 R/W

 I2C_GO Writing to this register will instruct the LabJack to perform an I2C transaction. 5110 UINT16 R/W

19 May 2019

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus'>https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus<img
https://ljsimpleregisterlookup.herokuapp.com/static/images/ui-icons-extlink.png'

 I2C_ACKS An array of bits used to observe ACKs from the slave device. 5114 UINT32 R/W

 I2C_DATA_TX Data that will be written to the I2C bus. This register is a buffer. 5120 BYTE W

 I2C_DATA_RX Data that has been read from the I2C bus. This register is a buffer. Underrun
behavior - fill with zeros.

5160 BYTE R

Name Start Address Type Access

&print=true

LJTick-DAC Registers

Name Start
Address

Type Access

 TDAC#(0:22) Update a voltage output on a connected LJTick-DAC accessory. Even TDAC# =
DACA, Odd TDAC# = DACB. For instance, if LJTick-DAC accessory is connected to FIO2/FIO3 block on main
device, TDAC2 corresponds with DACA, and TDAC3 corresponds with DACB.

30000 FLOAT32 W

 TDAC_SERIAL_NUMBER Returns the serial number of an LJTick-DAC, and forces a re-read of
the calibration constants. Which LJTDAC is determined by the last write to TDAC# ... whether it was
successful or not.

55200 UINT32 R

&print=true

SBUS Registers

Name Start
Address

Type Access

 SBUS#(0:22)_TEMP Reads temperature in Kelvin from an SBUS sensor (EI-1050/SHT1x/SHT7x).
SBUS# is the DIO line for the EI-1050 enable. If SBUS# is the same as the value specified for data or clock
line, there will be no control of an enable line.

30100 FLOAT32 R

 SBUS#(0:22)_RH Reads humidity in % from an external SBUS sensor (EI-1050/SHT1x/SHT7x). #
is the DIO line for the EI-1050 enable. If # is the same as the value specified for data or clock line, there will be
no control of an enable line.

30150 FLOAT32 R

 SBUS#(0:22)_DATA_DIONUM This is the DIO# that the external sensor's data line is connected
to.

30200 UINT16 R/W

 SBUS#(0:22)_CLOCK_DIONUM This is the DIO# that the external sensor's clock line is
connected to.

30225 UINT16 R/W

 SBUS_ALL_DATA_DIONUM A write to this global parameter sets all SBUS data line registers to
the same value. A read will return the correct setting if all channels are set the same, but otherwise will return
0xFF.

30275 UINT16 R/W

 SBUS_ALL_CLOCK_DIONUM A write to this global parameter sets all SBUS clock line registers to
the same value. A read will return the correct setting if all channels are set the same, but otherwise will return
0xFF.

30276 UINT16 R/W

 SBUS_ALL_POWER_DIONUM Sets the power line. This DIO is set to output-high upon any read
of SBUS#_TEMP or SBUS#_RH. Default is FIO6 for the T4 and FIO2 for the T7. An FIO line can power up t…
sensors while an EIO/CIO/MIO line or DAC line can power up to 20 sensors. Set to 9999 to disable. To use
multiple power lines, use a DAC line for power, or otherwise control power yourself, set this to 9999 and then
control power using writes to normal registers such as FIO5, EIO0, or DAC0.

30277 UINT16 R/W

&print=true

1-Wire Registers

Name Start Address Type Access

 ONEWIRE_DQ_DIONUM The data-line DIO number. 5300 UINT16 R/W

19 May 2019

 ONEWIRE_DPU_DIONUM The dynamic pullup control DIO number. 5301 UINT16 R/W

 ONEWIRE_OPTIONS Controls advanced features. Value is a bitmask. bit 0: reserved, bit 1:
reserved, bit 2: 1=DPU Enabled 0=DPU Disabled, bit 3: DPU Polarity 1=Active state is high, 0=Active state is
low (Dynamic Pull-Up)

5302 UINT16 R/W

 ONEWIRE_FUNCTION Set the ROM function to use. 0xF0=Search, 0xCC=Skip, 0x55=Match,
0x33=Read.

5307 UINT16 R/W

 ONEWIRE_NUM_BYTES_TX Number of data bytes to be sent. 5308 UINT16 R/W

 ONEWIRE_NUM_BYTES_RX Number of data bytes to be received. 5309 UINT16 R/W

 ONEWIRE_GO Instructs the T7 to perform the configured 1-wire transaction. 5310 UINT16 W

 ONEWIRE_ROM_MATCH_H Upper 32-bits of the ROM to match. 5320 UINT32 R/W

 ONEWIRE_ROM_MATCH_L Lower 32-bits of the ROM to match. 5322 UINT32 R/W

 ONEWIRE_ROM_BRANCHS_FOUND_H Upper 32-bits of the branches detected during a search. 5332 UINT32 R

 ONEWIRE_ROM_BRANCHS_FOUND_L Lower 32-bits of the branches detected during a search. 5334 UINT32 R

 ONEWIRE_SEARCH_RESULT_H Upper 32-bits of the search result. 5328 UINT32 R

 ONEWIRE_SEARCH_RESULT_L Lower 32-bites of the search result. 5330 UINT32 R

 ONEWIRE_PATH_H Upper 32-bits of the path to take during a search. 5324 UINT32 R/W

 ONEWIRE_PATH_L Lower 32-bits of the path to take during a search. 5326 UINT32 R/W

 ONEWIRE_DATA_TX Data to be transmitted over the 1-wire bus. This register is a buffer. 5340 BYTE W

 ONEWIRE_DATA_RX Data received over the 1-wire bus. This register is a buffer. Underrun
behavior - buffer is static, old data will fill the extra locations, firmware 1.0225 changes this to read zeros.

5370 BYTE R

Name Start Address Type Access

&print=true

Asynchronous Serial

Name Start Address Type Access

 ASYNCH_ENABLE 1 = Turn on Asynch. Configures timing hardware, DIO lines and allocates the
receiving buffer.

5400 UINT16 R/W

 ASYNCH_BAUD The symbol rate that will be used for communication. 9600 is typical. Up to 38400
works, but heavily loads the T7's processor.

5420 UINT32 R/W

 ASYNCH_RX_DIONUM The DIO line that will receive data. (RX) 5405 UINT16 R/W

 ASYNCH_TX_DIONUM The DIO line that will transmit data. (TX) 5410 UINT16 R/W

 ASYNCH_RX_BUFFER_SIZE_BYTES Number of bytes to use for the receiving buffer. Max is
2048. 0 = 200

5430 UINT16 R/W

 ASYNCH_NUM_BYTES_RX The number of data bytes that have been received. 5435 UINT16 R

19 May 2019

 ASYNCH_NUM_BYTES_TX The number of bytes to be transmitted after writing to GO. Max is
256. 5440 UINT16 R/W

 ASYNCH_TX_GO Write a 1 to this register to initiate a transmission. 5450 UINT16 W

 ASYNCH_DATA_TX Write data to be transmitted here. This register is a buffer. 5490 UINT16 W

 ASYNCH_DATA_RX Read received data from here. This register is a buffer. Underrun behavior -
fill with zeros.

5495 UINT16 R

Name Start Address Type Access

&print=true Unknown register(s): ASYNCH_NUM_BITS

Stream Configuration

Name Start
Address

Type Access

 STREAM_SCANRATE_HZ Write a value to specify the number of times per second that all
channels in the stream scanlist will be read. Max stream speeds are based on Sample Rate which is
NumChannels*ScanRate. Has no effect when using and external clock. A read of this register returns the
actual scan rate, which can be slightly different due to rounding. For scan rates >152.588, the actual scan
interval is multiples of 100 ns. Assuming a core clock of 80 MHz the internal roll value is
(80M/(8*DesiredScanRate))-1 and the actual scan rate is then 80M/(8*(RollValue+1). For slower scan rates
the scan interval resolution is changed to 1 us, 10 us, 100 us, or 1 ms as needed to achieve the longer
intervals.

4002 FLOAT32 R/W

 STREAM_NUM_ADDRESSES The number of entries in the scanlist 4004 UINT32 R/W

 STREAM_SAMPLES_PER_PACKET Specifies the number of data points to be sent in the data
packet. Only applies to spontaneous mode.

4006 UINT32 R/W

 STREAM_SETTLING_US Time in microseconds to allow signals to settle after switching the mux.
Does not apply to the 1st channel in the scan list, as that settling is controlled by scan rate (the time from the
last channel until the start of the next scan). Default=0. When set to less than 1, automatic settling will be used.
The automatic settling behavior varies by device.

4008 FLOAT32 R/W

 STREAM_RESOLUTION_INDEX The resolution index for stream readings. A larger resolution
index generally results in lower noise and longer sample times.

4010 UINT32 R/W

 STREAM_BUFFER_SIZE_BYTES Size of the stream data buffer in bytes. A value of 0 equates to
the default value. Must be a power of 2. Size in samples is STREAM_BUFFER_SIZE_BYTES/2. Size in scans
is (STREAM_BUFFER_SIZE_BYTES/2)/STREAM_NUM_ADDRESSES. Changes while stream is running do
not affect the currently running stream.

4012 UINT32 R/W

 STREAM_AUTO_TARGET Controls where data will be sent. Value is a bitmask. bit 0: 1 = Send to
Ethernet 702 sockets, bit 1: 1 = Send to USB, bit 4: 1 = Command-Response mode. All other bits are reserv…

4016 UINT32 R/W

 STREAM_NUM_SCANS The number of scans to run before automatically stopping (stream-burst).
0 = run continuously. Limit for STREAM_NUM_SCANS is 2^32-1, but if the host is not reading data as fast as
it is acquired you also need to consider STREAM_BUFFER_SIZE_BYTES.

4020 UINT32 R/W

 STREAM_ENABLE Write 1 to start stream. Write 0 to stop stream. Reading this register returns 1
when stream is enabled. When using a triggered stream the stream is considered enabled while waiting for the
trigger.

4990 UINT32 R/W

 STREAM_SCANLIST_ADDRESS#(0:127) A list of addresses to read each scan. In the case of
Stream-Out enabled, the list may also include something to write each scan.

4100 UINT32 R/W

&print=true

Constant Current Sources

Name Start
Address

Type Access

19 May 2019

 CURRENT_SOURCE_200UA_CAL_VALUE Fixed current source value in Amps for the 200UA
terminal. This value is stored during factory calibration, it is not a current reading. Using the equation V=IR,
with a known current and voltage, it is possible to calculate resistance of RTDs.

1902 FLOAT32 R

 CURRENT_SOURCE_10UA_CAL_VALUE Fixed current source value in Amps for the 10UA
terminal. This value is stored during factory calibration, it is not a current reading. Using the equation V=IR,
with a known current and voltage, it is possible to calculate resistance of RTDs.

1900 FLOAT32 R

Name Start
Address

Type Access

&print=true

Internal Temp Sensor

Name Start
Address

Type Access

 TEMPERATURE_AIR_K Returns the estimated ambient air temperature just outside of the device
in its red plastic enclosure. This register is equal to TEMPERATURE_DEVICE_K - 4.3. If Ethernet and/or WiFi
is enabled, subtract an extra 0.6 for each.

60050 FLOAT32 R

 TEMPERATURE_DEVICE_K Takes a reading from the internal temperature sensor using
range=+/-10V and resolution=8, and applies the formula Volts*-92.6+467.6 to return kelvins.

60052 FLOAT32 R

&print=true

Protocol Details
Log in or register to post comments

Modbus - Protocol Details [referenceable]

Lengthy (and confusing) detail about Modbus TCP can be found at modbus.org, but all the information actually needed is covered in the following.

The LabJack is a Modbus TCP Server. A Modbus TCP Client can send a command to the LabJack and get back a response. Sometimes a Server is
called the Slave and a Client is called the Master.

Our Modbus TCP interface is quite simple. It consists of a register map with addresses from 0 to 65535. Each address points to a 16-bit value that might
be readable, writable, or both. Any function we support can be used to read or write values from any address. The meaning of the registers are defined
in the Modbus Map.

Note that in the Modbus spec, and the function documentation below, a register is specifically a 16-bit value. In our Modbus Map we define some 32-bit
values, and these are often referred to as a register, but when looking at the details of Modbus protocol realize that these are actually 2 registers. For
example, AIN0 is defined as a 32-bit value that is read starting at address 0. AIN0 is actually stored in 2 registers: the MSW (most significant word) is at
address 0 and the LSW (least significant word) is at address 1.

Modbus is big-endian, which means the most significant value is at the lowest address. With a read of a 16-bit (single register) value, the 1st byte
returned is the MSB (most significant byte) and the 2nd byte returned is the LSB (least significant byte). With a read of a 32-bit (2 register) value, the
value is returned MSW then LSW, where each word is returned MSB then LSB, so the 4 bytes come in order from most significant to least significant.

Packet size limits for the T7 are USB=64, Ethernet=1040, and WiFi=500 bytes. Packet size limits for the T4 are USB=64 and Ethernet=1040 bytes.
Modbus packets on the U3 and U6 are limited to 64 bytes, including the 2 zeros appended to the command.

Modbus Functions

We support standard functions 3 (Read Multiple), 4 (Read One), 6 (Write One), and 16 (Write Multiple). We also support a custom function called
Modbus Feedback (MBFB) that can handle multiple reads & writes in a single packet.

Some Modbus clients will ask you to specify "Coil", "Holding", "Discrete", or "Input". Choose "Holding", which should tell the client to use function 3, 4, 6,
or 16.

19 May 2019

https://labjack.com/user/login?destination=node/1916%23comment-form
https://labjack.com/user/register?destination=node/1916%23comment-form
https://labjack.com/modbus-protocol-details-referenceable
http://modbus.org/
https://labjack.com/support/modbus/map

Functions 4 and 6 are seldom used, so we will focus our discussion on functions 3, 16, and MBFB:

Command Read Regs Write Regs Feedback (MBFB)
#3 #16 #76

Byte[0:1] Trans ID Trans ID Trans ID
Byte[2:3] Protocol ID Protocol ID Protocol ID
Byte[4:5] Length Length Length
Byte 6 Unit ID Unit ID Unit ID
Byte 7 3 16 76

Byte[8:9] Address Address Frames
Byte[10:11] Num Regs (n) Num Regs (n)

Byte 12 Byte Count (2*n)
Byte 13... Data

Response Read Regs Write Regs Feedback (MBFB)
#3 #16 #76

Byte[0:1] Trans ID Trans ID Trans ID
Byte[2:3] Protocol ID Protocol ID Protocol ID
Byte[4:5] Length Length Length
Byte 6 Unit ID Unit ID Unit ID
Byte 7 3 16 76
Byte 8 Byte Count (2*n) Address MSB Data
Byte 9 Data Address LSB
Byte 10 Num Regs (n)
Byte 11

Read Multiple Registers (Function #3)
Standard Modbus function that reads 1 or more sequential registers from the specified starting address.

Command [# Bytes = 12]
Bytes 0-1: 0-65535 (Transaction ID, echoed by device)
Bytes 2-3: 0 (Protocol ID)
Byte 4: 0 (MSB of length)
Byte 5: 6 (LSB of length)
Byte 6: 1 (Unit ID)
Byte 7: 3 (Function #)
Bytes 8-9: 0-65535 (Starting register address, MSB-LSB)
Bytes 10-11: 1-127 (Number of registers to read, MSB-LSB)

Response [# Bytes = 9 + 2*#Registers, limit depends on device]
Bytes 0-3: Echo of command bytes 0-3 (Transaction ID and Protocol ID)
Bytes 4-5: 3 + 2*#Registers (Length, MSB-LSB)
Byte 6: 1 (Unit ID)
Byte 7: 3 (Function #)
Byte 8: 2*#Registers
Bytes 9+: Data

Write Multiple Registers (function #16)
Standard Modbus function that writes 1 or more sequential registers from the specified starting address.

Command [# Bytes = 13 + 2*#Registers, limit depends on device]
Bytes 0-1: 0-65535 (Transaction ID, echoed by device)
Bytes 2-3: 0 (Protocol ID)
Bytes 4-5: 7 + 2*#Registers (Length, MSB-LSB)
Byte 6: 1 (Unit ID)
Byte 7: 16 (Function #)
Bytes 8-9: 0-65535 (Starting register address, MSB-LSB)
Bytes 10-11: 0-65535 (Number of registers to write, MSB-LSB)
Byte 12: 2*#Registers
Bytes 13+: Data

Response [# Bytes = 12]
Bytes 0-3: Echo of command bytes 0-3 (Transaction ID and Protocol ID)
Byte 4: 0 (MSB of length)
Byte 5: 6 (LSB of length)
Byte 6: 1 (Unit ID)
Byte 7: 16 (Function #)

19 May 2019

Bytes 8-9: 0-65535 (Starting register address, MSB-LSB)
Bytes 10-11: 0-65535 (Number of registers to write, MSB-LSB)

Modbus Feedback (MBFB, function #76)
Custom function that supports multiple frames, where each frame reads or writes 1 or more sequential registers. Frames are executed in order.

Command
Bytes 0-1: 0-65535 (Transaction ID, echoed by device)
Bytes 2-3: 0 (Protocol ID)
Bytes 4-5: 0-65535 (Length, MSB-LSB)
Byte 6: 1 (Unit ID)
Byte 7: 76 (Function #)
Bytes 8+: Frames

Read Multiple Frames
Frame Byte 0: 0 (Frame Type)
Frame Byte 1-2: 0-65535 (Starting register address)
Frame Byte 3: 1-255 (Number of registers to read)

Write Multiple Frames
Frame Byte 0: 1 (Frame Type)
Frame Byte 1-2: 0-65535 (Starting register address)
Frame Byte 3: 1-255 (Number of registers to write)
Frame Byte 4+: Data

Response
Bytes 0-3: Echo of command bytes 0-3 (Transaction ID and Protocol ID)
Bytes 4-5: 0-65535 (Length, MSB-LSB)
Byte 6: 1 (Unit ID)
Byte 7: 76 (Function #)
Bytes 8+: Data (Response for read frames)

Transaction ID: The device echos this value. Use to match responses with commands.
Protocol ID: Not used. Just pass 0.
Length: The number of bytes after the "Length" parameter, per the Modbus spec.
Unit ID: Not used. Pass 1 to fit with convention.
Function #: 3, 4, 6, or 16 are standard Modbus "holding" functions. 76 is our custom MBFB function.
Address: A 16-bit address that points to a 16-bit register.
Register: A 16-bit value pointed to by an address. Registers are defined in our Modbus Map.
Data: Data to write to registers are data read from registers.

In the event of an error, all functions return the standard Modbus error response, which means you get back the 8-byte header above but bit 7 of byte 7
(function #) will be set, so the value is 131/132/134/144/204 rather than 3/4/6/16/76. You then get a 9th byte, which is an official Modbus spec errorcode:

#define ILLEGAL_FUNCTION 0x01
#define ILLEGAL_DATA_ADDRESS 0x02
#define ILLEGAL_DATA_VALUE 0x03
#define SLAVE_DEVICE_FAILURE 0x04
#define ACKNOWLEDGE 0x05
#define SLAVE_DEVICE_BUSY 0x06
#define MEMORY_PARITY_ERROR 0x08
#define GATEWAY_PATH_UNAVAILABLE 0x0A
#define GATEWAY_TARGET_NO_RESPONSE 0x0B

Anytime there is an error, further information is available by reading from a group of 4 registers that start at 55000. There are 8 of these groups with
starting addresses from 55000 to 55028. For example, the first group is:

55000: LabJack Error Code #0
55001: Error Frame #0
55002: Modbus Error #0
55003: Transaction ID #0

The standard Modbus functions (3/4/6/16) only use the first error information group shown above.

MBFB only uses the other 7 groups with starting addresses from 55004 to 55028. If you get an error response from an MBFB command, look at the
upper nibble of the 9th byte to get an offset that tells you which error information group to look at. So with MBFB the starting address for the error
information group of 4 registers, is 55000 + (4 * UpperNibble9thByte).

19 May 2019

https://labjack.com/support/modbus/map

With MBFB, if a frame generates an error, no further frames are executed. Frames before the ErrorFrame are executed (e.g. outputs are set), but no
data is returned for those frames (since you just get the standard Modbus error response).

On the U3/U6, when a Modbus command is sent by USB the low-level packet must have 2 zeros appended to the front. This is how the U3/U6 knows
that the packet (after the 2 zeros) is Modbus, and not the normal low-level protocol used by the U3/U6. The response does not have anything added and
is pure Modbus.

Examples

Read FIO0

FIO0 is a UINT16 (single register) at address 2000. It should read 1 if floating, and 0 if you jumper it to GND. Here is a packet captured with Wireshark:

Command: 0x00 0x00 0x00 0x00 0x00 0x06 0x01 0x03 0x07 0xD0 0x00 0x01

Response: 0x00 0x00 0x00 0x00 0x00 0x05 0x01 0x03 0x02 0x00 0x01

The first 8 bytes in both packets are Transaction ID (0x0000), ProtocolID (0x0000), Length (0x0006 or 0x0005), UnitID (0x01), and Function# (0x03).

In the command, the last 4 bytes are Address (0x07D0) and #Registers (0x0001). 0x07D0 is decimal 2000.

In the response the last 3 bytes are 2*#Registers (0x02) and Data (0x0001). We get 2*#Registers = 2 as expected, and the data value of our read is 1
meaning that FIO0 is reading high.

Read TEST

TEST starts at address 55100. If you read a UINT32 (2 registers) from here, you should get 0x00112233 (d1122867), or if you read just a UIN16 (1
register) from here you should get 0x0011 (d17).

UINT32 read:
Command: 0x00 0x00 0x00 0x00 0x00 0x06 0x01 0x03 0xD7 0x3C 0x00 0x02

Response: 0x00 0x00 0x00 0x00 0x00 0x07 0x01 0x03 0x04 0x00 0x11 0x22 0x33

UINT16 read:
Command: 0x00 0x00 0x00 0x00 0x00 0x06 0x01 0x03 0xD7 0x3C 0x00 0x01

Response: 0x00 0x00 0x00 0x00 0x00 0x05 0x01 0x03 0x02 0x00 0x11

Write TEST_UINT32

Write the value 0xC0BCCCCD to TEST_UINT32 which starts at address 55120.

Write using function d16 (0x10):
Command: 0x00 0x00 0x00 0x00 0x00 0x0B 0x01 0x10 0xD7 0x50 0x00 0x02 0x04 0xC0 0xBC 0xCC 0xCD

Response: 0x00 0x00 0x00 0x00 0x00 0x06 0x01 0x10 0xD7 0x50 0x00 0x02

Read back using function d3 (0x03):
Command: 0x00 0x00 0x00 0x00 0x00 0x06 0x01 0x03 0xD7 0x50 0x00 0x02

Response: 0x00 0x00 0x00 0x00 0x00 0x07 0x01 0x03 0x04 0xC0 0xBC 0xCC 0xCD

If your Modbus client supports 32-bit integers and/or floating point values, this is a good register to test that. First write 0xC0BCCCCD as described
above.

0xC0BCCCCD is 3233598669 as a decimal 32-bit unsigned integer. 0xC0BCCCCD is -1061368627 as a decimal 32-bit signed integer. Have your client
read 55120 as a UINT32 and INT32 and confirm you get those values. If instead you get 3436036284 and -858931012 your client has swapped the
word order.

0xC0BCCCCD is equal to -5.90 as a float, so if you read 55120 as a 32-bit float you should get -5.90. If you instead get -107873760.0, your client is
swapping the words and interpreting the data as 0xCCCDC0BC.

Write DAC0

DAC0 is a FLOAT32 value starting at address d1000 (0x03E8). We will set DAC0 to 3.3 volts, which is 0x40533333 in hex.

Command: 0x00 0x00 0x00 0x00 0x00 0x0B 0x01 0x10 0x03 0xE8 0x00 0x02 0x04 0x40 0x53 0x33 0x33

Response: 0x00 0x00 0x00 0x00 0x00 0x06 0x01 0x10 0x03 0xE8 0x00 0x02

Useful FLOAT32 values in hex:
0.0 = 0x00000000
3.3 = 0x40533333
5.0 = 0x40A00000

Read T7 or T4 Product ID (Search network for a device)

19 May 2019

http://www.wireshark.org/

Searching for a device is typically handled by the LJM_ListAll() function, but this is how to do it yourself. Broadcast a UDP Modbus feedback packet
asking for the product ID (address 60000).

Read product ID:
Command: 0x00 0x00 0x00 0x00 0x00 0x06 0x01 0x4C 0x00 0xEA 0x60 0x02

T7 Response: 0x00 0x00 0x00 0x00 0x00 0x06 0x01 0x4C 0x40 0xE0 0x00 0x00

T4 Response: 0x00 0x00 0x00 0x00 0x00 0x06 0x01 0x4C 0x40 0x80 0x00 0x00

UD Modbus (Old, Deprecated)
Log in or register to post comments

This page is for the deprecated Modbus map called UD Modbus, which applies to:

U3: Hardware 1.30 (U3C), Firmware 1.05+
U6: Firmware 1.00+
UE9: Comm 1.48+, Control 1.97+

The registers listed below are supported to work as specified, but no new development is planned for UD Modbus. The T-series devices use our current
Modbus map which is active and fully-supported.

UD Modbus Software

The LJSocket page catalogs our experience connecting to Modbus software. We list of some of the quirks we’ve seen, e.g., a zero-based offset vs. one-
based offset.

Examples of Modbus communication in LabVIEW are attached to the bottom of this page. These work for direct Modbus communication to the UE9, or
Modbus communication over USB using LJSocket.

Modbus
Support:

Device Hardware
Version

First Firmware

U3 1.2 Not Supported
U3 1.21 Not Supported
U3 1.3 Modbus Added in FW 1.05
U6 2 Modbus Added in FW 1.00

UE9 1.1
Modbus Added in Control 1.70, reworked in 1.97. Ethernet support in Comm 1.43 and USB
support in Comm 1.48

UD Modbus Protocol

LabJack devices implement the Modbus TCP protocol. For USB devices such as the U3 and U6, use LJSocket to provide a TCP socket interface.
Without LJSocket, there is no COTS software we know of that can communicate using Modbus TCP over the LabJack’s USB interface.

Only Modbus functions 3 (Read Multiple), 4 (Read One), 6 (Write One), and 16 (Write Multiple) are supported. In COTS software this often means
specifying “Holding” registers.

On the U3/U6/UE9, when a Modbus command is sent by USB the low-level packet must have 2 zeros appended to the front. This is how the U3/U6/UE9
knows that the packet (after the 2 zeros) is Modbus, and not the normal low-level protocol. The response does not have anything added and is pure
Modbus. This is generally handled automatically at higher levels (e.g. LJSocket adds the zeros). SkyMotes only speak Modbus, so commands should
always be pure Modbus with no added zeros.

Ethernet Modbus packets on the UE9 are limited to 256 bytes. USB Modbus packets on the UE9 are limited to 256 bytes, including the 2 zeros
appended to the command. USB Modbus packets on the U3 and U6 are limited to 64 bytes, including the 2 zeros appended to the command. SkyMote
Modbus packets over USB or Ethernet are limited to 64 bytes.

While the Modbus website goes into more detail, here are the bytes the LabJack devices expect:

Requests
Function
Name

Read Reg. Read Regs. Write
Reg

Write Regs.

Function
Number

4 3 6 16 Description

Byte[0:1] Trans ID Trans ID Trans ID Trans ID Send anything

Byte[2:3] Protocol ID Protocol ID
Protocol

Protocol ID Always pass zero

19 May 2019

https://labjack.com/support/ljm/users-guide/function-reference/ljmlistall
https://labjack.com/user/login?destination=node/323%23comment-form
https://labjack.com/user/register?destination=node/323%23comment-form
https://labjack.com/products/t7
https://labjack.com/support/software/api/modbus
https://labjack.com/support/software/misc-documentation/ljsocket
https://labjack.com/support/software/misc-documentation/ljsocket
https://labjack.com/support/software/misc-documentation/ljsocket
http://en.wikipedia.org/wiki/Commercial_off-the-shelf

ID
Byte[4:5] Length Length Length Length

Number of bytes starting at
byte 6

Byte 6 Unit ID Unit ID Unit ID Unit ID
For U3, U6, and UE9 pass
0xff

Byte 7 4 3 6 16 Function #

Byte[8:9] Address Address Address Address
As it appears in the
Modbus map

Byte[10:11]
Num Regs
(n)

Num Regs
(n)

Reg
Value

Num Regs
(n)

Byte 12
Byte Count
(2*n)

Byte 13... Reg Values...

 Read Reg. Read Regs.
Write
Reg Write Regs.

Responses 4 3 6 16
Byte[0:1] Trans ID Trans ID Trans ID Trans ID Echo of sent value

Byte[2:3] Protocol ID Protocol ID
Protocol
ID

Protocol ID

Byte[4:5] Length Length Length Length
Number of bytes starting at
byte 6

Byte 6 Unit ID Unit ID Unit ID Unit ID
Byte 7 4 3 6 16

Byte 8
Byte Count
(2*n)

Byte Count
(2*n)

Address Address

Byte 9 Reg Data Reg Data

Byte 10
Reg
Value

Num Regs
(n)

Byte 11

If developing your own software, functions 3 (Read Multiple Registers) and 16 (Write Multiple Registers) are all that is needed, so here is more detail
about those:

Read Multiple Registers (function #3)

Command [# Bytes = 12]
Bytes 0-1: 0-65535 (Transaction ID, echoed by device)
Bytes 2-3: 0 (Protocol ID)
Byte 4: 0 (MSB of Length)
Byte 5: 6 (LSB of Length)
Byte 6: 0-254 (Unit ID, echoed on U3/U6/UE9, 0 for SkyMote bridge, 1-254 for mote)
Byte 7: 3 (function #)
Bytes 8 & 9: 0-65535 (MSB and LSB, respectively, of starting register address)
Byte 10: 0 (MSB of #Registers)
Byte 11: 1-27 or 1-123 (LSB of #Registers, # of registers to read)

Response [# Bytes = 9 + 2*#Registers, max is 64 or 256]
Bytes 0-3: Echo of command bytes 0-3 (Transaction ID and Protocol ID)
Byte 4: 0 (MSB of Length)
Byte 5: 3 + 2*#Registers (LSB of Length)
Byte 6: Unit ID
Byte 7: 3 (function #)
Bytes 8: 2-54 or 2-246 (2*#Registers)
Bytes 9+: Data

Write Multiple Registers (function #16)

Command [# Bytes = 13 + 2*#Registers, max is 62/64 or 254/256]
Bytes 0-1: 0-65535 (Transaction ID, echoed by device)
Bytes 2-3: 0 (Protocol ID)
Byte 4: 0 (MSB of Length)
Byte 5: 7 + 2*#Registers (LSB of Length)
Byte 6: 0-254 (Unit ID, echoed on U3/U6/UE9, 0 for SkyMote bridge, 1-254 for mote)
Byte 7: 16 (function #)
Bytes 8 & 9: 0-65535 (MSB and LSB, respectively, of starting register address)
Byte 10: 0 (MSB of #Registers)
Byte 11: 1-24/25 or 1-120/121 (LSB of #Registers, # of registers to write)

19 May 2019

Bytes 12: 2-48/50 or 2-240/242 (2*#Registers)
Bytes 13+: Data

Response [# Bytes = 12]
Bytes 0-3: Echo of command bytes 0-3 (Transaction ID and Protocol ID)
Byte 4: 0 (MSB of Length)
Byte 5: 6 (LSB of Length)
Byte 6: Unit ID
Byte 7: 16 (function #)
Bytes 8 & 9: 0-65535 (MSB and LSB, respectively, of starting register address)
Byte 10: 0 (MSB of #Registers)
Byte 11: 1-24/25 or 1-120/121 (LSB of #Registers, # of registers to write)

Note: "Length" is number of bytes after the "Length" parameter. From the Modbus spec.

Examples

Here is an example LabJackPython session that communicates with a U6 connected over USB. Debugging is turned on to show the bytes sent and
received. These are done directly over USB, not through LJSocket, so the outgoing packets have 2 extra zeros in front that tell the USB device this is a
Modbus packet.

>>> import u6
>>> d = u6.U6()
>>> d.debug = True
>>> d.readRegister(0)
Sent: [0x0, 0x0, 0xa6, 0x3f, 0x0, 0x0, 0x0, 0x6, 0x0, 0x3, 0x0, 0x0, 0x0, 0x2]
Response: [0xa6, 0x3f, 0x0, 0x0, 0x0, 0x7, 0x0, 0x3, 0x4, 0xb8, 0xf5, 0x70, 0x0]
-0.00011703372001647949

The Python code reads from register 0, which the map below states is AIN0. Here’s how to read from AIN1:

>>> d.readRegister(2)
Sent: [0x0, 0x0, 0xa6, 0x40, 0x0, 0x0, 0x0, 0x6, 0x0, 0x3, 0x0, 0x2, 0x0, 0x2]
Response: [0xa6, 0x40, 0x0, 0x0, 0x0, 0x7, 0x0, 0x3, 0x4, 0x40, 0x9d, 0x94, 0xfc]
4.9244365692138672

AIN1 is at register 2 because each analog input takes 2 registers (32-bits). The Modbus map below lists how many registers each address requires in the
“Min Regs” column. Here’s how to read AIN0, AIN1, AIN2, and AIN3 at the same time:

>>> d.readRegister(0, numReg = 8)
Sent: [0x0, 0x0, 0xa6, 0x41, 0x0, 0x0, 0x0, 0x6, 0x0, 0x3, 0x0, 0x0, 0x0, 0x8]
Response: [0xa6, 0x41, 0x0, 0x0, 0x0, 0x13, 0x0, 0x3, 0x10, 0xb8, 0xee, 0xe0, 0x0, 0x40, 0x9d, 0xa7, 0xbe, 0x3f, 0x3, 0x84, 0x62, 0x3f, 0x16, 0x24, 0xe8]
[-0.00011390447616577148, 4.9267263412475586, 0.51373875141143799, 0.58650064468383789]

Because the addresses (0, 2, 6, and 8) are all consecutive, we can request 8 registers starting at address 0. The four floating point values are returned
as a sequence of 16 bytes, and LabJackPython (and other Modbus software) knows how to recombine them.

Here’s how to set DAC0 to 3.7 V.

>>> d.writeRegister(5000, 3.7)
Sent: [0x0, 0x0, 0xa6, 0x42, 0x0, 0x0, 0x0, 0xb, 0x0, 0x10, 0x13, 0x88, 0x0, 0x2, 0x4, 0x40, 0x6c, 0xcc, 0xcd]
Response: [0xa6, 0x42, 0x0, 0x0, 0x0, 0x6, 0x0, 0x10, 0x13, 0x88, 0x0, 0x2]
3.7000000000000002

We’ve wired DAC0 to AIN1 so that we can read it back:

>>> d.readRegister(2)
Sent: [0x0, 0x0, 0xa6, 0x43, 0x0, 0x0, 0x0, 0x6, 0x0, 0x3, 0x0, 0x2, 0x0, 0x2]
Response: [0xa6, 0x43, 0x0, 0x0, 0x0, 0x7, 0x0, 0x3, 0x4, 0x40, 0x6c, 0x5d, 0x37]
3.6931893825531006

UD Modbus Map

We've made the UD Modbus map available as a spreadsheet (opens in new window). The spreadsheet may refer to alpha, beta, or unreleased firmware.
Contact us for assistance.

In the columns marked “Read” and “Write”, we indicate the progress we’ve made with the following legend:

x means that the register is fully implemented and tested to the satisfaction of our team.
n means that the register is implemented, but not fully tested to the satisfaction of our team.
f means that the register won’t throw an error, but isn’t implemented. This is most commonly used for features that devices don’t offer. For example,
the UE9/U6 doesn’t have FIOs that can become Analog, so the FIO Analog registers don’t do anything on the UE9/U6.

If the space is blank, then it means it isn’t implemented, and will throw a Modbus error if you try to access it.

The “Min Regs” column indicates if you need to read more than one register. Each register is 16 bits. For example, AIN readings are 32-bit floating

19 May 2019

https://labjack.com/support/labjackpython
https://spreadsheets.google.com/ccc?key=0Amxc6oFjz5FHcE4yOU9udFljaUo5S3I3X2ZWRFhSVEE&hl=en&authkey=CO6Az_8N
https://labjack.com/contact

point numbers, and so they must be read in increments of 2 16-bit registers.

The online jsBeautifier program can organize your JavaScript code, even if it is unreadable.

 Supported

 U3 FW
1.28

UE9 Ctrl
2.04

U6 Ctrl
1.06

UEW B
0.06

SM 0.06

Address Description Min
Regs

Data
Type

More Info Read Write Read Write Read Write Read Write Read Write

0 Analog Inputs 2 single x x x
1000 AIN Res 1 u16 x f x x x x
1500 AIN Range 1 u16 x f x x x x
2000 AIN Settling 1 u16 x f x x x x
2500 AIN Options 1 u16 x f x x x
3000 AIN Neg Chn 1 u16 x x x x x

5000 DAC Values 2 single x x x x x

6000 DIO State 1 u16 x x x x x x
6100 DIO Direction 1 u16 x n x x x n
6200 Power Switch State 1 u16

6700
FIO States (Upper Byte is
Mask)

1 u16 Masks are only n n x x x n

6701
EIO States (Upper Byte is
Mask)

1 u16 meaningful n n x x x n

6702
CIO States (Upper Byte is
Mask)

1 u16 when writing n n x x x n

6703
MIO States (Upper Byte is
Mask)

1 u16

6750
FIO Directions (Upper Byte
is Mask)

1 u16 n n x x x n

6751
EIO Directions (Upper Byte
is Mask)

1 u16 n n x x x n

6752
CIO Directions (Upper Byte
is Mask)

1 u16 n n x x x n

6753
MIO Directions (Upper Byte
is Mask)

1 u16

6800 Raw Single IO State 1 u16 n n x x n n
6900 Raw Single IO Direction 1 u16 n n x x n n

7000 Timer Clock (Long) 2 u32 x x x x x x
7002 Timer Divisor (Long) 2 u32 x x x x x x
7100 Timer Config 2 u32 x x x x x x
7200 Timers (Read/Reset) 2 u32/i32 n n x x x x
7300 Counters (Read/Reset) 2 u32 n n x x n n

8000 Stream Config

8200 Stream Start
8210 Stream Stop
8500 Stream Data

9000 SHT

9100 I2C Options 8 R / W x x
9101 I2C Speed x x
9102 I2C SDA x x
9103 I2C SCL x x
9104 I2C Address x x
9105 I2C Num To Tx x x
9106 I2C Num To Rx x x
9107-9122 I2C Tx Data x x

9200 SPI
9300 UART

10000 VBatt x
10002 Temperature (C? K? F?) x x
10004 RH% x

19 May 2019

https://html-cleaner.com/js/

10006 Light (Lux? Cd?) x
10008 Pressure (Unit?) x

10800 Motion Detected? x
10802 Motion Settings x x
10012 Sound (# Addresses?)

10800 Switch A
10810 Switch B
10900 Relay A

12000 RX LQI single x
12002 TX LQI single x
12004 Get Battery single x
12006 Get Temp single x
12008 Get Light single x
12010 Get Motion single x
12012 Get Sound single x
12014 Get RH% single x
12016 Get Pressure single

14000 TLB Check-In Report 1 24

14000 Status/Reserved 1 u16 bit 0 - Flashing x

14001
RX LQI (Byte0), TX LQI
(Byte1)

1 2 bytes x

14002 Battery Voltage (V) 2 single x
14004 Bump Count / Motion 1 u16 x
14005 # MMA Sample 1 u16 x
14006 Temperature (C) 2 single x
14008 Light Current (Units?) 2 single x
14010 Light Max 2 single x
14012 Light Min 2 single x
14014 Sound Current (Units?) 2 single x
14016 Sound Max 2 single x
14018 Sound Min 2 single x
14020 RH % 2 single x
14022 Reserved 2 reserved

14030 TLB Check-In Report 2 23 x
14030 Status/Reserved 1 u16 x
14031 Temperature Max 2 single x
14033 Temperature Min 2 single x
14035 Temperature Average 2 single x
14037 Light Average 2 single x
14039 Sound Average 2 single x
14041 RH % Max 2 single x
14043 RH % Min 2 single x
14045 RH % Average 2 single x
14047 Reserved 6 reserved x

10700 Burst Settings
10701 Frequency Index
10702 Burst Num Samples
10703 Burst Channel 0
10704 Burst Channel 1

35100 Buzz Duration
35101 Buzz 1
35102 Buzz 2
35103 Power
35104 Inten 1
35105 Inten 2

40000 Script Settings
40100 Script Debug
40200 Script Stop

19 May 2019

40300 Script GO
41004-41999 Script RAM
42004-42999 Script App

50000 General Config
50000 PANID u16 x

50001 Channel Mask 1
Bridge only, bit 0 = chan
11, bit 16 = chan 26

 x

50100 Sleeping Mote Config
50100 Process Interval 2 u16 f f

50102
Sleep Time / Check In Time
(ms)

2 u16 x x

50104 Sleep Options 2 u16 x x
50106 numChildCommFailures 2 u16 x x
 x x

50120 Network Password 8
byte 0 = Options, bytes 1-
15 = Password

 x x

50400 Spontaneous config 1 First bit = 0(off), 1(on)

50500 Pin Offset 1 x x x f x x
50501 Num Timers Enabled 1 x x x x x x
50502 Counter Mask 1 x x x x x x

50590 FIO Analog 1
Bitmask (1=Analog,
0=digital)

x x f f

50591 EIO Analog 1
Bitmask (1=Analog,
0=digital)

x x f f

50800 SWDT Settings 6 x x
50801 SWDT Time x x
50802 DIO Response A x x
50803 DIO Response B x x
50804 DAC0 Response x x
50805 DAC1 Response x x

55000 Detailed Error 1 x x
55900 Reserved

Ethernet
Processor
(56000-
56999)

56000 Firmware Version 1 u16 x
56002 Buffer Status 12 u32
56004 NumEthRX u32
56006 NumEthTX u32
56008 NumPIBRX u32
56010 NumPIBTX u32
56012 Num Mapped u32
 Eth Processor Last Error u16
 DM Overflows u16
 DM OVF During u16
 DM OVF During u16
 Num iPIB TOs u16
 Nun oPIB TOs u16

56100 Settings (Read only) 12 u32 x
56102 Current IP u32 x

19 May 2019

56104 Current Subnet u32 x
56106 Current Gateway u32 x
56108 Current DNS u32 x
56110 Current Alt DNS u32 x

56150 Settings 12 u32 x x
56152 Default IP u32 x x
56154 Default Subnet u32 x x
56156 Default Gateway u32 x x
56158 Reserved u32 x Filler
56160 Reserved u32 x Filler

56200 MAC (802.3, 6-byte) 3

56900 Flash Lock Key
56902 Flash Erase 2
56904 Flash Pointer
56906 Flash Write 18

56908 Flash Read

56998
W = Enter flash mode / R =
BL Version

56999 Restart (4C4A)

USB
Processor
(57000-
57999)

57000
USB Processor Firmware
Version

1 2 bytes [MSB, LSB] x

57001 USB Proc. Buffer Status 1 u16 x
57002 NumUSBRX 2 u32 x
57004 NumUSBTX 2 u32 x
57006 NumPIBRX 2 u32 x
57008 NumPIBTX 2 u32 x
57010 USB Processor Last Error 1 u16 x
57011 DM Overflows 1 u16 x
57012 DM OVF During PIB TRNX 1 u16 x
57013 DM OVF During USB TRNX 1 u16 x
57014 Num PIB TOs 1 u16 x
57015 Nun USB TOs 1 u16 x
57016 Num Spontaneous Sent 2 u32
57018 Num Spontaneous Dropped 2 u32

57020 Error History (last 16 errors) u16 x

57050 VUSB 2 single P
57052 VJack 2 single x
57054 VST 2 single x

57998
W = Enter flash mode / R =
BL Version

 u16

57999 Restart (4C4A) u16

58000
Device Name (USB String
Format)

 Writing Byte 0 erases x x

59000 Flash Lock Key 2 x x x
59020 0xAA55 1 x
59021 0xC33C 1 x

19 May 2019

59022 Address to Write 2 x
59024 Start of 32 bytes of data 1-40 (16 registers long) x

59074 0xAA55 x
59075 0xC33C x
59076 Block to Erase 2 registers x

59080 Start of Image x
59082 Length of Image (Bytes) x
59084 Start of 20-byte checksum x

59100 Read Address 2 x x x
59120 Data from flash x x

59198
Change mode (0=norm,
1=flash)

59200 Num Known Devices 2 u32 x
59202 Device 0 ID 1 u16 x
59329 Device 127 ID 1 u16 x

59400 Network Channel 1 u16 x

59410 Energy Scan 8
16 bytes, byte0 = chan11,
takes 2212 ms

59940 Wireless to UART ping test

59950 AIN binary / Num Samples
59952 AIN Max / Range
59953 AIN Min / JN_Chn (0-3)
59954 AIN Avg /
59955 AIN Standard Deviation /

59980 Set Hardware Config x x

59988
Range Test Mode. Num
Minutes x p

59989
Hi Power Mode. Num
Minutes

59990
Rapid mode timeout
(Minutes)

1

59999 Reset (0x4C4A) x

60000-60999 User Mem 16 x
61000-61999 Calibration Data 16 x

64000-64007 AES Key n x x
64008-64009 IP Address for CloudDot 2 string n x x
64010 Port for CloudDot 1 int n x x
64016 Heartbeat n x x

65000 Product ID 1 int x x x
65001 Serial Number 2 int x x x
65003 Local ID 1 int x x x
65004 Hardware Version 1 int x x x
65005 Hardware Options 1 int x x x
65006 Firmware Version 1 spf x x x x
65007 Bootloader Version 1 spf x x x
65008 Other Versions 1 spf x

19 May 2019

 65100 Product ID 2 x
65102 Firmware Version 1 x
65103 Unit ID 1 x x
65104 MAC (805.15.4, 8-byte) 4 x
65108 Serial Number 2 x
65110 Device Name 16 x x x x

19 May 2019

	Direct Modbus TCP
	Introduction
	Getting Started
	Modbus Client Applications
	Example Code
	Modbus Map
	Protocol Details
	UD Modbus (Old)

	Getting Started
	Modbus - Getting Started [referenceable]
	Test Registers
	TEST
	TEST_UINT16
	TEST_UINT32
	TEST_INT32
	TEST_FLOAT32

	Modbus Client Applications
	Modbus Client Applications
	General Modbus Information

	Modbus Client Applications Table
	Modbus Client Applications (T-Series)
	T7, T4

	Direct Modbus TCP Examples
	Direct Modbus TCP
	Direct Modbus TCP Overview
	Getting Started
	Modbus Map
	Direct Modbus API Documentation

	Modbus TCP Example Code Table
	Modbus TCP Example Code Table (Referencable)
	Direct Modbus TCP Example Code
	T7, T4

	Modbus Map
	3.1 Modbus Map [T-Series Datasheet]
	Modbus Map Tool
	Also On This Page

	Usage
	Protocol
	0-Based Addressing
	Single Overlapping Map of Addresses from 0-65535
	Big-Endian
	Data Type Constants
	Sequential Addresses
	ljm_constants.json

	Printable Modbus Map
	Analog Input Registers
	DAC Registers
	Digital I/O Registers
	Digital Extended Features
	Digital EF Clock Source
	SPI Registers
	I2C Registers
	LJTick-DAC Registers
	SBUS Registers
	1-Wire Registers
	Asynchronous Serial
	Stream Configuration
	Constant Current Sources
	Internal Temp Sensor

	Protocol Details
	Modbus - Protocol Details [referenceable]
	Examples

	UD Modbus (Old, Deprecated)
	UD Modbus Software
	UD Modbus Protocol
	Examples
	UD Modbus Map

