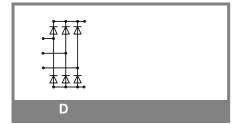

SKD 115

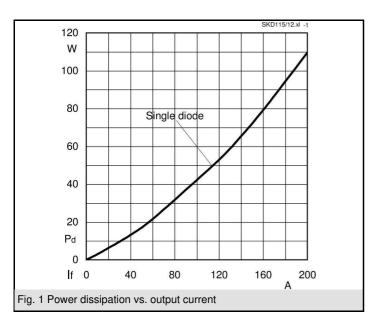
Bridge Rectifiers

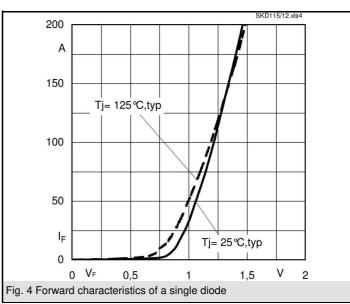
SKD 115

Target Data

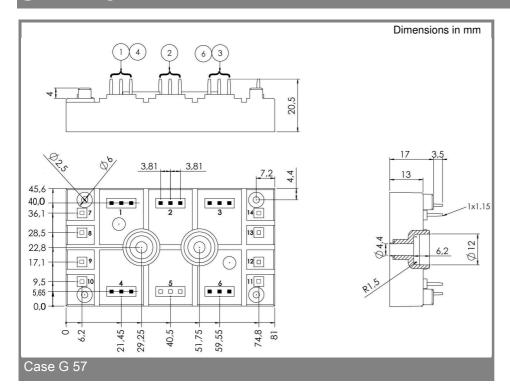
Features

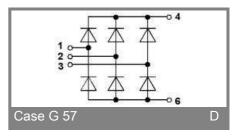

- Compact design
- SKiiP technology: thermal pressure contact, no base plate and no hard mould
- Two screws mounting
- Heat transfer and isolation through direct copper board (low R th)
- Low resistance in steady-state and high reliability
- High surge currents
- Up to 1800 V
- UL recognized, file no. E 63 532


Typical Applications*


- Three phase rectifiers for power supplies
- Input rectifiers for variable frequency drives
- Rectifiers for DC motor field supplies
- · Battery charger rectifiers

V _{RSM} V	V _{RRM} , V _{DRM} V	I _D = 110 A (full conduction) (T _s = 85 °C)
1200	1200	SKD 115/12
1600	1600	SKD 115/16
1800	1800	SKD 115/18


Symbol	Conditions	Values	Units
I _D	T _s = 85 °C	110	А
I _{FSM}	T _{vi} = 25 °C; 10 ms	1200	Α
	T _{vi} = 125 °C; 10 ms	1150	Α
i²t	T _{vi} = 25 °C; 8,3 10 ms	7200	A²s
	T _{vj} = 125 °C; 8,3 10 ms	6600	A²s
V _F	T _{vi} = 125 °C; I _F = 75 A	max. 1,25	V
V _(TO)	T _{vi} = 125 °C	max. 0,8	V
r _T	T _{vi} = 125 °C	max. 7	mΩ
I_{RD}	$T_{vj} = 25 \text{ °C}; V_{DD} = V_{DRM}; V_{RD} = V_{RRM}$		mA
			mA
R_{thjh}	per diode	1	K/W
			K/W
T _{solder}	Terminals, max 10s	260	°C
T _{vj}		- 40 + 150	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 (3000)	V
M _s	to heatsink; SI units	2,5	Nm
Mt			Nm
m	approx.	75	g
Case		G 57	



SKD 115

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.