

Guidebook คู่มือการใช้งาน

สำหรับ BA II Plus และ BA II Plus Professional

Opentech Co., Ltd.

ชื่อหนังสือ คู่มือการใช้งานเบื้องต้น เครื่องคิดเลขการเงิน Texas Instruments รุ่น BA II Plus และ BA II Plus Professional 2021 จัดทำโดย บริษัท โอเพ่นเทค จำกัด 1168/105 ชั้น 35 ลุมพินีทาวเวอร์ ถนนพระราม 4 ทุ่งมหาเมฆ สาทร กรุงเทพมหานคร 10120 Tel. 02-679-8008, 081-936-3629 e-mail: opentech.ti@gmail.com Line: opentech.ti www.opentech.co.th

ดาวน์โหลดคู่มือเพิ่มเติมได้ที่

เรียนรู้ผ่านคลิปวิดีโอได้ที่

บริษัท โอเพ่นเทค จำกัด ตัวแทนจำหน่ายเครื่องคิดเลข Texas Instruments อย่างเป็นทางการรายเดียวในประเทศไทย

สงวนลิขสิทธิ์ตามกฎหมาย โดย บริษัท โอเพ่นเทค จำกัด

ห้ามคัดลอก ลอกเลียน ดัดแปลง ทำซ้ำ จัดพิมพ์ หรือกระทำอื่นใด โดยวิธีการใดๆ ในรูปแบบใดๆ ไม่ว่าส่วนใดส่วนหนึ่งของหนังสือเล่มนี้ เพื่อเผยแพร่ในสื่อทุกประเภทหรือเพื่อวัตถุประสงค์ใดๆ นอกจากจะได้รับอนุญาต

การใช้งานเบื้องต้น

---[1]---

	PRO	FESSIO	NAL	
2nd INV HY BAL	=- ,]		DEL INS BOI	192.
	🔶 TEX	AS INSTR	UMENTS	
QUIT	SET	DEL	INS	
CPT	ENTER	t		ONOFF
2ND	CF	NPV	IRR	-
xP/Y	P/Y	AMORT	BGN	CLR TVN
N	[//Y]	PV	PMT	FV
%	VT	x ²	1/X	
HYP	SIN	COS	TAN	XI
INV	(yx	×
ox	DATA	STAT	BOND	nPr
LN	7	8	9	
ROUND	DEPR	216	BRKEVN	nCr
STO	4	5	6	+
	DATE	ICONV	PROFIT	ANS
RCL	1	2	3	
CLR WORK	MEM	FORMAT	RESET	-
CEIC	0		+ -	

- 1. การเปิดเครื่อง กดปุ่ม ON/OFF
- การปิดเครื่อง มี 2 วิธี กดปุ่ม ON/OFF หรือ ทิ้งไว้เฉยๆ 5 นาที เครื่องจะปิดอัตโนมัติ <u>หมายเหตุ</u> การปิดเครื่องมิใช่การลบข้อมูลในตัวเครื่อง ข้อมูลเดิมที่เคยใส่ไว้จะยังอยู่
- 3. การเลือกคำสั่งลำดับที่ 2 (2nd Functions)

หากต้องการใช้คำสั่งสีเหลืองที่อยู่เหนือปุ่มต่างๆ
 นั้นๆ เช่น ต้องการตั้งค่า [SET] ให้กดปุ่ม [2nd] แล้วกดปุ่ม [ENTER]

4. การตั้งค่า Format ในเครื่องคำนวณ

To Select Press		Display	Default	
Number of decimal places	[2nd] [FORMAT]	DEC 0–9 (Press 9 for floating-decimal)	2	
Angle units	Ŧ	DEG (degrees) RAD (radians)	DEG	
Dates	ţ	US (mm-dd-yyyy) Eur (dd-mm-yyyy)	US	
Number separators	Ŧ	US (1,000.00) Eur (1.000,00)	US	
Calculation method	ŧ	Chn (chain) AOS ™ (algebraic operating system)	Chn	

ให้กดปุ่ม [2nd] ก่อน แล้วจึงไปกดที่ปุ่ม

A.การเปลี่ยนแปลงค่าทศนิมยม- ใส่ค่าที่ ต้องการแล้วกดปุ่ม<u>ENTER</u> B. ส่วนค่าอื่นวิธีเปลี่ยนให้กด <u>2nd</u> [SET] C. ตั้งค่าเสร็จแล้ว วิธีการออกจาก Format ให้กด <u>2nd</u> [QUIT] D. Chn คือ การกระทำจากซ้ายไปขวา เช่น 15 – 5 × 3 + 12 ÷ 6 = 7 AOS คือ ทำตามหลัก Order of Operation เช่น 15 – 5 × 3 + 12 ÷ 6 = 2

- การแก้ไขตัวเลข ก่อนที่จะกดปุ่ม Operation
 (บวก ลบ คูณ หาร ยกกำลัง เป็นต้น)
 ให้กดปุ่ม → เพื่อแก้ไขค่าที่ใส่ผิด
- การคำนวณทางคณิตศาสตร์
 เมื่อใส่ค่าต่างๆ เสร็จแล้วต้องการให้เครื่อง คำนวณผลลัพธ์ให้กด =
- การ RESET เครื่อง กดปุ่ม [2nd] [RESET] ((ซึ่งอยู่เหนือปุ่ม+/-)) เครื่องจะถามว่า RST? กด ENTER วัตถุประสงค์ของการ RESET คือ
 ต้องการลบค่าตัวแปรต่างๆ ทั้งหมดใน เครื่อง

ใน Worksheet, TVM และการคำนวณต่างๆ

2. เพื่อทำให้ทุกอย่างกลับไปเป็นค่าตั้งต้น

То	Press	Display
Add 6 + 4	6 + 4 =	10.00
Subtract 6 – 4	6 – 4 =	2.00
Multiply 6 × 4	6 × 4 =	24.00
Divide 6 ÷ 4	6 ÷ 4 ≡	1.50
Find universal power: 3 ^{1.25}	3 y ^x 1.25 =	3.95
Use parentheses: 7 × (3 + 5)	7 × (3 + 5) =	56.00
Find percent: 4% of \$453	453 × 4 % =	18.12
Find percent ratio: 14 to 25	14 ÷ 25 % =	56.00
Find price with percent add-on: \$498 + 7% sales tax	498 + 7 %	34.86 532.86
Find price with percent discount: \$69.99 - 10%	69.99 – 10 % =	7.00 62.99
Find number of combinations where: n = 52, r = 5	52 [2nd] [nCr] 5 =	2,598,960.00
Find number of permutations where: n = 8, r = 3	8 [2nd] [nPr] 3 =	336.00

 8. Time Value of Money (TVM) – PV, FV, PMT, I/Y, N (คำตอบที่ได้มาจากการตั้งทศนิยม 4 ตำแหน่ง) เพื่อการคำนวณที่ถูกต้อง P/Y (number of payments per year) ส่วนมากจะมีค่าเป็น 1 วิธีตรวจสอบให้กด [2nd] [P/Y] ถ้าไม่ใช่ 1 ให้กด [1] [ENTER]

<u>ตัวอย่างที่ 1</u>	เรานำ	เงินไปฝา	ากธนาค	าร 20,0	00 บาท			
ธนาคารคิดอัตราดอกเบี้ย 3 % ต่อปี								
ณ สิ้นปีทิ	5 เรา:	จะมีเงินส	อยู่เท่าใด	ı				
1 1	1			I	I			
					1			

<u>ความหมายของตัวย่อต่างๆ</u>

Variable	Key	Display
Number of periods	N	N
Interest rate per year	[/Y]	I/Y
Present value	PV	PV
Payment	PMT	PMT
Future value	FV	FV
Number of payments per year	2nd [P/Y]	P/Y
Number of compounding periods per year	ł	C/Y
End-of-period payments	2nd [BGN]	END
Beginning-of-period payments	[2nd] [SET]	BGN

<u><<<< ห้ามลืม!!! >>>>></u> <u>หลังจากการคำนวณเสร็จแล้ว หากต้องการคำนวณครั้งต่อไป</u> ให้ทำการลบค่าตัวแปรเดิมออกก่อนทุกครั้งโดยการกด **[2nd] [CLR TVM]**

<u>ตัวอย่างที่ 5</u> บริษัทประกัน ได้วางแผนการลงทุนให้นาย ก โดยบริษัทประกันได้แนะนำให้ นาย ก ลงทุนปีละ 15,000 บาท โดยลงทุน ณ ปัจจุบันเป็นงวดแรก เป็นเวลา 10 งวด ผู้ลงทุนได้อัตราผลตอบแทนปีละ 8% อยากทราบว่า ณ ปลายปีที่ 10 นักลงทุนผู้นี้จะมีเงินทั้งหมดเท่าใด

NOTE: เนื่องจากโจทย์ที่กำหนด เป็นการจ่ายเงินตอนต้นงวด (annuity due) ดังนั้นจึงจำเป็นต้องมีการตั้งค่าเครื่องใหม่ เพื่อให้เป็นการคิดแบบต้นงวด (BGN mode)

จากนั้นกด [15]0]00[+/-]PMT [8][/Y] [1]0[N] [CPT]FV คำตอบคือ 234,682.3119 บาท

<u>แบบฝึกหัด</u>

- 1) นำเงินไปฝากธนาคาร 50,000 บาท อัตราดอกเบี้ย 2.5 % ถามว่าอีกกี่ปี เราจะมีเงินเป็นสองเท่า Ans: 28.07
- 2) นำเงินไปฝากสหกรณ์ 100,000 บาท ผ่านไป 5 ปี มีเงิน 114,806.26 บาท ถามว่าอัตราดอกเบี้ยเป็นเท่าใด Ans: 2.8%
- 3) ฝากเงินเป็นประจำทุกปีๆ ละ 5,000 บาท เป็นเวลา 10 ปี อัตราดอกเบี้ย 4.5% สิ้นปีที่ 10 จะมีเงินเท่าใด Ans: 61,441.05
- 9. Cash Flow (CF) IRR, NPV

<u>ตัวอย่างที่ 6</u> บริษัทแห่งหนึ่งมีแผนจะซื้อเครื่องจักรใหม่ราคา 8,000 บาท ทางบริษัทต้องการผลตอบแทนการ ลงทุน 20% ตารางข้างล่างแสดงผลตอบแทนที่คาดว่าจะได้รับในระยะเวลา6 ปี จงหา NPV

ปีที่	CASH FLOW ESTIMATE
1	3,500
2-5	ปีละ 4,500
6	4,000

<u>เขียน Cash Flow</u>

- - - [5] - - -

ใส่ CASH FLOW เริ่มแรก	8000+/-ENTER	CFo = -8,000.0000
ใส่ CASH FLOW ในปีที่ 1	↓3500ENTER ↓ เจอ F01 = 1.00 คือความถี่	C01 = 4,500.0000 F01 = 1.0000
ใส่ CASH FLOW ปีที่ 2 - 5	↓ (4)5)0)0ENTER) ↓ (4)ENTER	C02 = 4,500.0000 F02 = 4.0000
ใส่ CASH FLOW ในปีที่ 6	↓ 4000ENTER ↓	C03 = 4,000.0000 F03 = 1.0000
เข้าใน NPV	NPV	I = 0.0000
ใส่อัตราผลตอบแทนที่ต้องการ จากการลงทุน	20ENTER	I = 20.0000
คำนวณ NPV	↓ CPT	NPV = 0.0000 NPV = 5,964.0132

<u>คำตอบ</u> NPV = 5,964.0132

ห้ามลืม !!!! จะขึ้นข้อใหม่ ให้กดลบค่าตัวแปรเดิมทุกครั้ง

<u>ตัวอย่างที่ 7</u> บริษัทมีแผนที่จะซื้อเครื่องจักรใหม่ ราคา 2,500 บาท โดยตารางข้างล่างแสดงผลตอบแทนที่คาด ว่าจะได้รับในเวลา 4 ปี จงหาผลตอบแทนภายในจากการลงทุนในโครงการนี้ (IRR)

ปีที่	CASH FLOW ESTIMATE
1	500
2	600
3	1,200
4	1,200

<u>เขียน Cash Flow</u>

ขั้นตอน	วิธีกด	หน้าจอ
ลบค่าตัวแปรเดิม (CLEAR WORKSHEET)	[2nd] [CLR WORK]	0.0000
เลือก CASH FLOW WORKSHEET	CF	CFo = 0.0000
ใส่ CASH FLOW เริ่มแรก	2500+/-ENTER	CFo = -2,500.0000
ใส่ CASH FLOW ในปีที่ 1	↓500ENTER ↓	C01 = 500.0000 F01 = 1.0000
ใส่ CASH FLOW ปีที่ 2 - 5	↓ 600ENTER ↓	C02 = 600.00 F02 = 1.00
ใส่ CASH FLOW ในปีที่ 6	↓ 1200ENTER ↓ 2ENTER	C03 = 1,200.0000 F03 = 2.0000
เข้าใน IRR	(IRR) CPT	IRR = 0.0000 IRR = 12.6708

10. สถิติ (Statistics) ในการใช้ฟังก์ชั่น Statistics Worksheet ในเครื่อง BA II Plus จำเป็นต้องใส่ข้อมูล (DATA) ลงในเครื่องเสียก่อน จึงจะคำนวณค่าต่างๆ ได้

- ใส่ข้อมูล กด [2nd][DATA] ซึ่งอยู่เหนือปุ่ม [7] (สามารถใส่ข้อมูลได้สูงสุด 50 คู่)
- เลือกวิธีการคำนวณและคำนวณค่าต่างๆ กด [2nd][STAT] ซึ่งอยู่เหนือปุ่ม [8]

222 11 20 10 00 10 10 10 10 10 10 10 10 10 10 10				
N.12.14119N4N.1.17N7.16	Variable	Key	Display	Variable Type
ของแต่ละตัวแปร	Number of observations	↓ (as	n	Auto-compute
และวิธีการคำนวณ	Mean (average) of X values	needed)	x	Auto-compute
	Sample standard deviation of X		Sx	Auto-compute
	Population standard deviation of X		σΧ	Auto-compute
	Mean (average) of Y values		ӯ**	Auto-compute
	Sample standard deviation of Y		Sy**	Auto-compute
	Population standard deviation of Y		σy**	Auto-compute
	Linear regression y-intercept		a**	Auto-compute
	Linear regression slope		b**	Auto-compute
	Correlation coefficient		r**	Auto-compute
	Predicted X value		X'**	Enter/compute
	Predicted Y value		Y'**	Enter/compute
	Sum of X values		ΣΧ	Auto-compute
	Sum of X squared values		Σ Χ ²	Auto-compute
	Sum of Y values		Σ Y**	Auto-compute
	Sum of Y squared values		Σ Υ²**	Auto-compute
	Sum of XY products		ΣΧΥ**	Auto-compute

10.1 One-Variable Statistics คำนวณหา $n, \bar{x}, S_x, \sigma_x, \sum x, \sum x^2$ ค่า

ในการใส่ DATA ค่า Y จะเป็นความถี่ของตัวแปร X

<u>ตัวอย่างที่ 8</u> นักเรียนห้องหนึ่ง สอบได้คะแนนดังนี้

	คะแนน	10	11	12	13	14	15	16	รวม		
	จำนวนนักเรียน	3	2	1	3	7	3	1	20		
จงหาส่วนเบี่ยงเบนมาตรฐาน ขั้นตอน				Standar	rd Devi วิธีก	ation) าด			หน้	้ำจอ	
í	ลบค่าตัวแปรเดิมใน	I DATA			2n	d			X01	0.0000	
	(CLEAR DAT	A)		[DATA]	[2nd][(CLR WO)rk]				
	ใส่ค่าตัวแปร >	(01		[10E	NTER			X01 =	10.0000	
	ใส่ค่าความถี่ ١	/01			↓ 3EN] TER]		Y01 = 1.0000 Y01 = 3.0000			
	ใส่ค่าตัวแปร >	(02		Ţ	11	ENTER			X02 =	11.0000	
	ใส่ค่าความถี่ \	(02		[↓ 20	NTER]			Y02 =	2.0000	
	ใส่ค่าตัวแปร >	(03		ţ	12				X03 =	12.0000	
ใส่ค่าความถี่ Y03				L L					Y03 = 1.0000		
	ใส่ค่าตัวแปร >	(04		Ţ		ENTER			X04 =	13.0000	
	ใส่ค่าความถี่ \	/04		Ŀ	1 [3][<u>:NIER</u> J			Y04 =	3.0000	
	ใส่ค่าตัวแปร >	(05		Ŧ					X05 =	14.0000	
	ใส่ค่าความถี่ \	(05					-		Y05 =	7.0000	
	ใส่ค่าตัวแปร >	(06		[↓ 「	[1] [5]] [2] [X06 =	11.0000	
	ใส่ค่าความถี่ พ	(06					-		Y06 =	2.0000	
	ใส่ค่าตัวแปร > -	(07		Ţ		<u>ENTER)</u>			X07 =	11.0000	
	ใส่ค่าความถี พ	(07			•]	J			Y07 =	1.0000	
	เลือก ONE – VAF	R STAT		[<u>2</u> n	[<u>2nd</u>][S d][SET]	STAT] ไปเรื่อย	ๆ		L 1	.IN V	
	เข้าไปดูค่าต่า	งๆ			Ţ]			n = 2	20.0000	
					↓ ↓]			$\overline{x} = 1$	3.1000	
					[↓	J			<i>S</i> _x =	1.8325	
					Ţ	j			<i>σ</i> _x =	1.7961	
					Ţ	J			$\sum x = 2$	262.0000	
									$\sum x^2 = 3$,496.0000	

10.2 Two- Variable Statistics สามารถเลือก Regression ได้ 4 แบบ

Regression Models

For two-variable data, the Statistics worksheet uses four regression models for curve fitting and forecasting.

Model	Formula	Restrictions		
LIN	Y = a + b X	None		
Ln	$Y = a + b \ln(X)$	All X values > zero		
EXP	Y = a b×	All Y values > zero		
PWR	Y = a X ^b	All X and Y values > zero		

Correlation Coefficient (r) ถ้าค่ายิ่งเข้าใกล้ 1 หรือ -1 แสดงว่าเส้นกราฟฟิตกับข้อมูลดีมาก แต่ถ้าค่าเป็น 0 แสดงว่าเส้นกราฟไม่ฟิตกับข้อมูล

<u>ตัวอย่างที่ 9</u> อัตราผลตอบแทนของหุ้น ก กับอัตราผลตอบแทนของตลาด จากข้อมูลในตารางข้างล่าง

อัตราผลตอบแทนของหุ้น ก	อัตราผลตอบแทนของตลาด	
10	5	
-15	-10	
15	10	
5	0	
-5	-10	

จงหาอัตราผลตอบแทนของหุ้น ก หากอัตราผลตอบแทนของตลาดเท่ากับ 18%

ขั้นตอนที่ 1 หาสมการความสัมพันธ์ของข้อมูลก่อน (โจทย์ให้หาค่าอัตราผลตอบแทนหุ้น ก กำหนดเป็นค่า Y) ขั้นตอนที่ 2 นำค่าอัตราผลตอบแทนของตลาด 18% กำหนดเป็น X ไปแทนในสมการความสัมพันธ์ที่ได้

ขั้นตอน	วิธีกด	ห	น้ำจอ
ลบค่าตัวแปรเดิมใน DATA		X01	0.0000
(CLEAR DATA)	[data][2nd][CLR WORK]		
ใส่ค่าตัวแปร X01	5 ENTER	X01 :	= 5.0000
ใส่ค่าความถี่ Y01	↓10ENTER	Y01 =	10.0000
ใส่ค่าตัวแปร X02	↓ 10+/-ENTER	X02 =	-10.0000
ใส่ค่าความถี่ Y02	[↓] [1][5][+/–][ENTER]	Y02 =	-15.0000
ใส่ค่าตัวแปร X03		X03 =	10.0000

ใส่ค่าความถี่ Y03		Y03 = 15.0000
ใส่ค่าตัวแปร X04		X04 = 0.0000
ใส่ค่าความถี่ Y04	J [5]ENTER]	Y04 = 5.0000
ใส่ค่าตัวแปร X05	$\downarrow 10 + - ENTER$	X05 = -10.0000
ใส่ค่าความถี่ Y05	[↓] [5](+/−][ENTER]	Y05 = -5.0000
เลือก LIN	[2nd][STAT] หากไม่พบให้กด [2nd][SET]	LIN
	ไปเรื่อยๆ	
เข้าไปดูค่าต่างๆ	↓ ↓	n = 5.0000
		$\bar{x} = -1.0000$
		$S_x = 8.9443$
	↓ ↓	$\sigma_x = 8.0000$
		$\bar{y} = 2.0000$
		$S_y = 12.0416$
	l l	$\sigma_y = 10.7703$
	L I	a = 3.2813
		b = 1.2813
		r = 0.9517

ค่า r ใกล้เคียง 1 มาก แสดงว่าข้อมูลชุดนี้มีความสัมพันธ์เป็นแบบเส้นตรง จะได้สมการความสัมพันธ์ Yi = 3.2813 + 1.2813 Xi

ขั้นตอน	วิธีกด	หน้าจอ
ใส่ค่า XI	↓18ENTER	X'= 18.0000
คำนวณค่า YI อัตราผลตอบแทน หุ้น ก	↓ CPT	Y'= 26.3438

<u>ตอบ</u> หากอัตราผลตอบแทนของตลาดเท่ากับ 18 % จะได้อัตราผลตอบแทนจากการลงทุนหุ้น ก คือ 26.344%

OPEN TECH Sole Distributor of Texas Instruments in Thailand

บริษัท โอเพ่นเทค จำกัด 1168/105 ชั้น 35 ลุมพินีทาวเวอร์ ถนนพระราม 4 ทุ่งมหาเมฆ สาทร กรุงเทพมหานคร 10120 โทร. 02-679-8008, 081-936-3629

e-mail: opentech.ti@gmail.com

Line: @opentech.ti

www.opentech.co.th

