SA3 Series Compact Design Vector Control AC Drive # Product Range #### Product Features #### **High Performance Vector Control Technology** - · Vector control and Sensorless vector control (Maximum operating frequency 120 Hz). - High starting torque: Sensorless vector control (SVC) 150% 0.3 Hz, and closed-loop vector control (FOC + PG) 180% 0 Hz. #### **High Response Performance** Speed accuracy: less than 1% with 0 to 100% load variation For applications with sudden load changes such as cranes and metal processing machinery. #### **High Overload Capacity** Greatly improved overload capacity to 150% for 60 seconds and 200% for 3 seconds, making it suitable for tooling machinery applications that requires the ability to handle sudden load changes. #### **4-Quadrant Torque Control and Limits** Parameters or analog signals can be used to simply establish limits for 4 torque items. # SA3 #### **Product Features** #### **Temporary Compensation at Low Voltage** - During temporary power disruptions, output frequency can be controlled in order to maintain the DC bus voltage of the AC drive to control motor deceleration or stoppage. - · When power is restored, the AC drive will carry out re-acceleration to attain the frequency prior to power - · May be applied to equipment that are not permitted to operate when idle. #### **Regeneration Avoidance Functions** · By adjusting output frequency and voltage, AC drive DC bus voltage can be kept at a specified value and prevent overvoltage. #### **Magnetic Flux Brake** • When the motor is stopping, the magnetic flux will be transmitted to the motor coil to shorten deceleration time without relying on regenerative resistance. #### Low-noise Carrier Wave Control (Soft-PWM) - Motor noise is controlled so that the metallic sound is transformed into a more pleasing buzz. - Low noise operations to reduce the interference exerted upon external radio frequencies. #### **High Performance synchronous Motor Control Technology** - · Supports induction motor (IM) and synchronous motor (IPM and SPM) control. - · Supports open loop synchronous motor control. #### **LCD Operation Interface** - · Supports 2 display styles. - · Able to simultaneously displaying 6 sets of operational data. - Calendar support. Offers both English and Chinese language interfaces. - · Capable of storing 3 sets of parameters. - · Supports shuttle settings. #### **Isolated air Channel Designs** · Fan wind channels are sealed and isolated from the heat dissipation system and electrical parts. Dust will not be able to infiltrate the interior of the machine through the fans. #### **Supports Multiple Control Modes for Different Applications** - · Internal position control, torque control, speed control, and tension control functions. - · I/O switching can be used to initiate simple mixed controls over speed and torque as well as speed and location. - Position control is capable of supporting home position return mode, zero-servo control, and single-axis position control mode (must be used with PG301C, PG301L, and PG302L). - · Supports open-loop tension control, feeding disruption inspection, and automatic spool replacement functions. Factory Automation #### **Product Features** #### **Multiple I/O Terminals** - · Includes 10 sets of multi-functional combinational logic input terminals (with high-speed pulse inputs *1) · Includes 5 sets of multi-functional combinational output terminals (including electric relay output *2, transistor output *2, - and high-speed pulse output *1). - · Includes 3 sets of analog input signals (with -10~+10V*1 and 4~20mA/0~10V*2). - · Includes 2 sets of analog output signals (0~20mA/0~10V*2). - · 1 set of safety switch (S1~SC). #### **Built-in PLC Functions** - · Provides PLC programming software for easy - editing program. - · Applicable for programming for small number of point sand capable of supporting multiple functions. #### 12 Sets of Alarm Records For each alarm that occurs, the output frequency, output current, output voltage, accumulated count of temperature increase, PN voltage, total AC drive operation time, AC drive operational status, and the year, month, day, hour, minute, and second of the alarm will be recorded (only when used with PUC031C). #### **Improved Protection** Output phase failure protection, output short circuit protection, ground leakage protection, low voltage protection, motor overheating signal (PTC), and electrolytic capacitor life inspection. #### Through-the-wall Installation Support Provided for the Entire Series Improve heat dissipation, reduce heat generation within the cabinet, and improve protection for the cabinet contents. #### SA3 All-Series built-in RFI Filter · RFI is capable of suppressing electromagnetic interference # Applicable Industries Cranes Grinding Machine **Extrusion Machine** **Grinding Machine** Plating Machine Slitting Machine # **Electrical Specifications** | | | Frame | | - | 4 | | | В | | | el . | | D | | | | F | |--------------|-----------|---------------------------------|---|--|---------------|----------------------------------|---------------|--------------|-------------|---------------|---------------|-------------|-------------|-------------|-------------|-------------|-----------| | Mod | lelSA: | 3-023-□□□K□ - | 0.75K
1.5KF | 1.5K
2.2KF | 2.2K
3.7KF | 3.7K
5.5KF | 5.5K
7.5KF | 7.5K
11KF | 11K
15KF | 15K
18.5KF | 18.5K
22KF | 22K
30KF | 30K
37KF | 37K
45KF | 45K
55KF | 55K
75KF | 75
90i | | | | Rated output capacity (kVA) | 2 | 3.2 | 4.2 | 6.7 | 9.5 | 12.5 | 18.3 | 24.7 | 28.6 | 34.3 | 45.7 | 55 | 65 | 82 | 11 | | | | Rated output current (A) | 5 | 8 | 11 | 17.5 | 25 | 33 | 49 | 65 | 75 | 90 | 120 | 145 | 170 | 215 | 28 | | | HD | Applicable motor capacity (HP) | 1 | 2 | 3 | 5 | 7.5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 75 | 10 | | | HD | Applicable motor capacity (kW) | 0.75 | 1.5 | 2.2 | 3.7 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 | 7 | | | | Overload current rating | | 150% 60 seconds 200% 3seconds (inverse time characteristics) | | | | | | | | | | | | | | | _ | | Carrier frequency (kHz) | | | 01 - | . 8 | 1~15kHz | 2 | | | | | | 1~9 | kHz | | | | Outbut | | Rated output capacity (kVA) | 3.2 | 4.2 | 6.7 | 9.5 | 12.5 | 18.3 | 24.7 | 28.6 | 34.3 | 45.7 | 55 | 65 | 82 | 110 | 13 | | 두 | | Rated output current (A) | 8 | 11 | 17.5 | 25 | 33 | 49 | 65 | 75 | 90 | 120 | 145 | 170 | 215 | 288 | 34 | | | ND | Applicable motor capacity (HP) | 2 | 3 | 5 | 7.5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 75 | 100 | 12 | | | ND | Applicable motor capacity (kW) | 1.5 | 2.2 | 3.7 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 | 75 | 9 | | | | Overload current rating | 120% 60seconds (inverse time characteristics) | | | | | | | | | | | | | | | | | | Carrier frequency (kHz) | | | | 3 | 1~15kHz | z | | 1~9kHz | | | | | | | | | | Maximur | n output voltage | 9 | | | | | | Three- | ohase 20 | 0-240V | | | | | | | | 2 | Rated po | ower voltage | | | | Three-phase 200-240V 50Hz / 60Hz | | | | | | | | | | | | | Power supply | Power vo | oltage permissible fluctuation | | | | | | Three | -phase : | L70-264\ | / 50Hz / | 60Hz | | | | | | | aus | Power fre | equency permissible fluctuation | | | | | | | | ±5% | | | | | | | | | 7 | Power so | ource capacity (kVA) | 2.5 | 4.5 | 6.4 | 10 | 12 | 17 | 20 | 28 | 34 | 41 | 52 | 65 | 79 | 100 | 1 | | Cod | oling i | method | Self cooling | | | | • | | | Forced a | ir cooling | 9 | | | | | | | We | ight (| ka) | 3.15 | 6 | 6 | 6 | 10.6 | 10.6 | 33 | 33 | 33 | 42.7 | 42.7 | 56 | | | | Note: The test conditions of rated output current, rated output capacity and frequency converter AC Drive power consumption are: the carrier frequency (P.72) is at the set value; the frequency converter/AC Drive output voltage is at 440V; the output frequency is at 60Hz, and the ambient temperature is 40oC. # **■ Electrical Specifications** | | | Frame | | | А | | | | В | | | С | | D | |-----------------------|---|---|--|---|---|--|--|---|--|--|--|---|---|---| | Лoc | | 3-043-□□□K □- | 0.75K
1.5KF | 1.5K
2.2KF | 2.2K
3.7KF | 3.7K
5.5KF | 5.5K
7.5KF | 7.5K
11KF | 11K
15KF | 15K
18.5KF | 18.5K
22KF | 22K
30KF | 30K
37KF | 37K
45KI | | | | Rated output capacity (kVA) | 2 | 3 | 4.6 | 6.9 | 10 | 14 | 18 | 25 | 29 | 34 | 46 | 56 | | | | Rated output current (A) | 3.0 | 4.2 | 6 | 9 | 12 | 17 | 24 | 32 | 38 | 45 | 60 | 73 | | | | Applicable motor capacity (HP) | 1 | 2 | 3 | 5 | 7.5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | | | HD | Applicable motor capacity (kW) | 0.75 | 1.5 | 2.2 | 3.7 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | | | | Overload current rating | | | 1 | 150% 60 s | econds 20 | 00% 3seco | nds (inver | e time cha | aracteristics | 5) | | | | _ | | Carrier frequency (kHz) | | | | | | 1 ~ 15kHz | : | | | | | 1~9k | | Outhout | | Rated output capacity (kVA) | 3 | 4.6 | 6.9 | 10 | 14 | 18 | 25 | 29 | 34 | 46 | 56 | 69 | | ā | | Rated output current (A) | 4.2 | 6 | 9 | 12 | 17 | 24 | 32 | 38 | 45 | 60 | 73 | 91 | | | | Applicable motor capacity (HP) | 2 | 3 | 5 | 7.5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | | | ND | Applicable motor capacity (kW) | 1.5 | 2.2 | 3.7 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | | | | Overload current rating | | | | 1 | 20% 60sec | onds (inve | rse time d | haracteristi | cs) | 111 | | | | | | Carrier frequency (kHz) | | | | | | 1 ~ 15kHz | | | | | | 1~9k | | | Maximu | m output voltage | | | | | - | hree-phas | se 380-480 | V | | | | | | 0 | Rated po | ower voltage | | | | | Three-p | hase 380- | 480V 50H | z / 60Hz | | | | | | | Power vo | oltage permissible fluctuation | | | | | Three-p | hase 342- | 528V 50H | z / 60Hz | | | | | | Power supply | Power fr | equency permissible fluctuation | | | | | to the second se | ± | 5% | | | | | | | 5 | | ource capacity (kVA) | 2.5 | 4.5 | 6.9 | 10.4 | 11.5 | 16 | 20 | 27 | 32 | 41 | 52 | 65 | | C | ooling | method | Self cooling | | | | A STATE OF THE STA | For | ced air co | oling | 100000 | | | | | _ | /eight | | 3.15 | 3.15 3.15 3.15 3.15 3.15 6 6 6 9.8 9.8 | | | | | | | | | | 1000 | | | | | | | | 3.13 | 3.15 | 6 | 6 | 6 | 9.8 | 9.8 | 9.8 | 33 | | | | | | 3.13 | 3.13 | 3.15 | 3.15 | 6 | 6 | 6 | 9.8 | 9.8 | 9.8 | 33 | | | | Frame | | D | 3.13 | | 3.15 | 6
F | 6 | | 9.8
G | 9.8 | | 33
H | | | | Frame
3-043-□□□K □- | 45K
55KF | | 75K
90KF | | | 10000 | 160K
185KF | | | 9.8
250K
280KF | | H
3151 | | | | * STANKES | 45K | D 55K | 75K | 90K | 110K | F
132K | 160K | 185K | G
220K | 250K | 280K | H
315i
355k | | | | 3-043-□□□K □- | 45K
55KF | D
55K
75KF | 75K
90KF | 90K
110KF | 110K
132KF | F
132K
160KF
198 | 160K
185KF | 185K
220KF
295 | 220K
250KF | 250K
280KF
402 | 280K
315KF
438 | H
315i
355k
491 | | | lel SA | 3-043- K - | 45K
55KF
69 | D
55K
75KF
84 | 75K
90KF
114 | 90K
110KF
137 | 110K
132KF
168 | F
132K
160KF | 160K
185KF
236 | 185K
220KF | 220K
250KF
367 | 250K
280KF | 280K
315KF | 315
355k
491
620 | | | | 3-043- K -
Rated output capacity (k/A)
Rated output current (A) | 45K
55KF
69
91
60 | D
55K
75KF
84
110 | 75K
90KF
114
150 | 90K
110KF
137
180 | 110K
132KF
168
220 | F
132K
160KF
198
260 | 160K
185KF
236
310 | 185K
220KF
295
340
250 | 220K
250KF
367
425 | 250K
280KF
402
480 | 280K
315KF
438
530 | 315
355k
491
620 | | | lel SA | 3-043 | 45K
55KF
69
91 | 55K
75KF
84
110
75 | 75K
90KF
114
150
100
75 | 90K
110KF
137
180
120
90 | 110K
132KF
168
220
150
110 | 132K
160KF
198
260
175
132 | 160K
185KF
236
310
215
160 | 185K
220KF
295
340
250
185 | 220K
250KF
367
425
300 | 250K
280KF
402
480
335
250 | 280K
315KF
438
530
375 | 315i
355k
491
620
420 | | loc | lel SA | 3-043- | 45K
55KF
69
91
60 | 55K
75KF
84
110
75 | 75K
90KF
114
150
100
75 | 90K
110KF
137
180
120
90 | 110K
132KF
168
220
150
110
econds 20 | F
132K
160KF
198
260
175
132
00% 3seco | 160K
185KF
236
310
215
160 | 185K
220KF
295
340
250
185 | 220K
250KF
367
425
300
220 | 250K
280KF
402
480
335
250 | 280K
315KF
438
530
375
280 | H
3151
355k
491
620
420
315 | | loc | lel SA | Rated output capacity (AM) Rated output capacity (AM) Rated output current (A) Applicable motor capacity (HM) Overload current reting Carrier frequency (HHz) | 45K
55KF
69
91
60
45 | 55K
75KF
84
110
75
55 | 75K
90KF
114
150
100
75 | 90K
110KF
137
180
120
90
150% 60 s | 110K
132KF
168
220
150
110
econds 20 | 132K
160KF
198
260
175
132
10% 3seco | 160K
185KF
236
310
215
160
nds (invers | 185K
220KF
295
340
250
185
se time cha | 220K
250KF
367
425
300
220 | 250K
280KF
402
480
335
250 | 280K
315KF
438
530
375
280 | H 3155 355k 491 620 420 315 | | loc | lel SA | 3-O43- | 45K
55KF
69
91
60
45 | 55K
75KF
84
110
75
55 | 75K
90KF
114
150
100
75 | 90K
110KF
137
180
120
90
150% 60 s | 110K
132KF
168
220
150
110
econds 20 | 132K
160KF
198
260
175
132
10% 3seco | 160K
185KF
236
310
215
160
nds (invers | 185K
220KF
295
340
250
185
se time cha | 220K
250KF
367
425
300
220
220
220 | 250K
280KF
402
480
335
250 | 280K
315KF
438
530
375
280 | H 315i 355k 491 620 420 315 6kHz 544 | | loc | lel SA | 3-043- | 45K
55KF
69
91
60
45 | 55K
75KF
84
110
75
55 | 75K
90KF
114
150
100
75 | 90K
110KF
137
180
120
90
150% 60 s | 110K
132KF
168
220
150
110
econds 2t
1~5
198
260 | 132K
160KF
198
260
175
132
00% 3seco | 160K
185KF
236
310
215
160
nds (inversional properties)
295
340 | 185K
220KF
295
340
250
185
se time cha | 220K
250KF
367
425
300
220
aracteristics
402
480 | 250K
280KF
402
480
335
250 | 280K
315KF
438
530
375
280
1~
491
620 | H 3151 3558 491 620 420 315 6kHz 544 683 | | loc | lel SA | 3-043- | 45K
55KF
69
91
60
45
84
110
75 | 55K
75KF
84
110
75
55
114
150 | 75K
90KF
114
150
100
75
137
180 | 90K
110KF
137
180
120
90
150% 60 s | 110K
132KF
168
220
150
110
econds 20
1-4
198
260
175 | 132K
160KF
198
260
175
132
00% 3seco
9kHz
236
310
215 | 160K
185KF
236
310
215
160
nds (inversional distribution of the control co | 185K
220KF
295
340
250
185
se time cha
367
425
300 | 220K
250KF
367
425
300
220
aracteristics
402
480
335 | 250K
280KF
402
480
335
250
s) | 280K
315KF
438
530
375
280
1~
491
620
420 | H 3155
3558
491
620
420
315
6kHz 544
683
475 | | Mod | HD | 3-043-1 | 45K
55KF
69
91
60
45 | 55K
75KF
84
110
75
55 | 75K
90KF
114
150
100
75 | 90K
110KF
137
180
120
90
150% 60 s | 110K
132KF
168
220
150
110
econds 20
1-4
198
260
175
132 | 132K
160KF
198
260
175
132
10% 3seco
0kHz
236
310
215 | 160K
185KF
236
310
215
160
nds (invense)
295
340
250
185 | 185K
220KF
295
340
250
185
se time cha
367
425
300
220 | 220K
250KF
367
425
300
220
aracteristics
402
480
335
250 | 250K
280KF
402
480
335
250 | 280K
315KF
438
530
375
280
1~
491
620 | H 3158
3558
491
620
420
315
6kHz 544
683
475 | | Mod | HD | 3-043-1 | 45K
55KF
69
91
60
45
84
110
75 | 55K
75KF
84
110
75
55
114
150 | 75K
90KF
114
150
100
75
137
180 | 90K
110KF
137
180
120
90
150% 60 s | 110K
132KF
168
220
150
110
econds 20
1-45
198
260
175
132
20% 60sec | 132K
160KF
198
260
175
132
10% 3seco
0kHz
236
310
215
160
onds (inve | 160K
185KF
236
310
215
160
nds (invense)
295
340
250
185 | 185K
220KF
295
340
250
185
se time cha
367
425
300 | 220K
250KF
367
425
300
220
aracteristics
402
480
335
250 | 250K
280KF
402
480
335
250
s) | 280K
315KF
438
530
375
280
1~
491
620
420
315 | H 3151 3558 491 620 420 315 6kHz 544 683 475 355 | | Mod | HD ND | 3-043-1 | 45K
55KF
69
91
60
45
84
110
75 | 55K
75KF
84
110
75
55
114
150 | 75K
90KF
114
150
100
75
137
180 | 90K
110KF
137
180
120
90
150% 60 s | 110K
132KF
168
220
150
110
econds 20
1-4
198
260
175
132
20% 60sec | 132K
160KF
198
260
175
132
10% 3seco
9kHz
236
310
215
160
onds (inve | 160K
185KF
236
310
215
160
nds (inversible)
295
340
250
185 | 185K
220KF
295
340
250
185
se time che
367
425
300
220 | 220K
250KF
367
425
300
220
aracteristics
402
480
335
250 | 250K
280KF
402
480
335
250
s) | 280K
315KF
438
530
375
280
1~
491
620
420
315 | H 3158
3558
491
620
420
315
6kHz 544
683
475 | | | HD ND Mainum | 3-043-1 | 45K
55KF
69
91
60
45
84
110
75 | 55K
75KF
84
110
75
55
114
150 | 75K
90KF
114
150
100
75
137
180 | 90K
110KF
137
180
120
90
150% 60 s | 110K
132KF
168
220
150
110
econds 20
1-4
198
260
175
132
20% 60sec | 132K
160KF
198
260
175
132
10% 3seco
9kHz
236
310
215
160
onds (inve | 160K
185KF
236
310
215
160
nds (inversible)
295
340
250
185
arse time do | 185K
220KF
295
340
250
185
se time chi
367
425
300
220
haracteristi | 220K
250KF
367
425
300
220
aracteristics
402
480
335
250 | 250K
280KF
402
480
335
250
s) | 280K
315KF
438
530
375
280
1~
491
620
420
315 | H 3151
355k
491
620
420
315
6kHz 544
683
475
355 | | No. | HD ND Maimu | 3-043- | 45K
55KF
69
91
60
45
84
110
75 | 55K
75KF
84
110
75
55
114
150 | 75K
90KF
114
150
100
75
137
180 | 90K
110KF
137
180
120
90
150% 60 s | 110K
132KF
168
220
150
110
ecconds 20
1-4
198
260
175
132
20% 60sec | 132K
160KF
198
260
175
132
10% 3seco
bkHz
236
310
215
160
oonds (inve
bkHz
Three-phas | 160K
185KF
236
310
215
160
nds (inversional properties)
340
250
185
arse time of | 185K
220KF
295
340
250
185
se time che
367
425
300
220
haracteristi | 220K
250KF
367
425
300
220
aracteristics
402
480
335
250 | 250K
280KF
402
480
335
250
s) | 280K
315KF
438
530
375
280
1~
491
620
420
315 | H 3151
355k
491
620
420
315
6kHz 544
683
475
355 | | Mox Orthur | HD ND Maximum Rated px Power vs | 3-043- | 45K
55KF
69
91
60
45
84
110
75 | 55K
75KF
84
110
75
55
114
150 | 75K
90KF
114
150
100
75
137
180 | 90K
110KF
137
180
120
90
150% 60 s | 110K
132KF
168
220
150
110
ecconds 20
1-4
198
260
175
132
20% 60sec | 132K
160KF
198
260
175
132
10% 3seco
bkHz
236
310
215
160
onds (inve
bkHz
Three-phasishase 380-
shase 342- | 160K
185KF
236
310
215
160
nds (inversional properties)
340
250
185
arse time of | 185K
220KF
295
340
250
185
se time che
367
425
300
220
haracteristi | 220K
250KF
367
425
300
220
aracteristics
402
480
335
250 | 250K
280KF
402
480
335
250
s) | 280K
315KF
438
530
375
280
1~
491
620
420
315 | H 3158 3558 491 620 420 315 6kHz 544 683 475 355 | | Mod | HD ND Maximum Rated px Power for | 3-043- | 45K
55KF
69
91
60
45
84
110
75 | 55K
75KF
84
110
75
55
114
150
100
75 | 75K
90KF
114
150
100
75
137
180
120
90 | 90K
110KF
137
180
120
90
150% 60 s
168
220
150
110 | 110K
132KF
168
220
150
110
econds 20
198
260
175
132
20% 60sec
1~5 | 132K
160KF
198
260
175
132
00% 3seco
0KHz
236
310
215
160
oonds (investigation)
three-phase 380-phase 380-phase 380-phase 342-phase 342- | 160K
185KF
236
310
215
160
nds (inversible)
295
340
250
185
arse time do
480V 50H
5528V 50H | 185K
220KF
295
340
250
185
se time cho
425
300
220
haracteristi | 220K
250KF
367
425
300
220
aracteristics
402
480
335
250 | 250K
280KF
402
480
335
250
s)
438
530
375
280 | 280K
315KF
438
530
375
280
1~620
420
315 | H 3151
355k
491
62C
42C
315
66kHz
544
683
475
355 | | District Power supply | HD ND Maximum Rated px Power vx Power fr Rower sx | 3-043- | 45K
55KF
69
91
60
45
84
110
75 | 55K
75KF
84
110
75
55
114
150 | 75K
90KF
114
150
100
75
137
180 | 90K
110KF
137
180
120
90
150% 60 s | 110K
132KF
168
220
150
110
ecconds 20
1-4
198
260
175
132
20% 60sec | 132K
160KF
198
260
175
132
20% 3seco
0kHz
236
310
215
160
onds (inve
0kHz
Three-phase
shase 380-
ohase 342- | 160K
185KF
236
310
215
160
nds (inversible)
295
340
250
185
arse time of | 185K
220KF
295
340
250
185
se time cha
367
425
300
220
20 characteristi | 220K
250KF
367
425
300
220
aracteristics
402
480
335
250 | 250K
280KF
402
480
335
250
s) | 280K
315KF
438
530
375
280
1~
491
620
420
315 | H 3158 3558 491 620 420 315 6kHz 544 683 475 355 | | District Power supply | HD ND Maximum Rated px Power vx Power fr Rower sx | 3-043- | 45K
55KF
69
91
60
45
84
110
75
55 | 55K
75KF
84
110
75
55
114
150
100
75 | 75K
90KF
114
150
100
75
137
180
120
90 | 90K
110KF
137
180
120
90
150% 60 s
168
220
150
110 | 110K
132KF
168
220
150
110
econds 20
198
260
175
132
20% 60sec
1~5 | 132K
160KF
198
260
175
132
20% 3seco
0kHz
236
310
215
160
onds (inve
0kHz
Three-phase
shase 380-
ohase 342- | 160K
185KF
236
310
215
160
nds (inversible)
295
340
250
185
arse time do
480V 50H
5528V 50H | 185K
220KF
295
340
250
185
se time cha
367
425
300
220
20 characteristi | 220K
250KF
367
425
300
220
aracteristics
402
480
335
250 | 250K
280KF
402
480
335
250
s)
438
530
375
280 | 280K
315KF
438
530
375
280
1~620
420
315 | H 3151
355k
491
62C
42C
315
66kHz
544
683
475
355 | Note: The test conditions of rated output current, rated output capacity and frequency converter AC Drive power consumption are: the carrier frequency (P.72) is at the set value; the frequency converter/AC Drive output voltage is at 440V; the output frequency is at 60Hz, and the ambient temperature is 40oC. # Common Specifications | 9 | Control method | SVPWM control, V/F control, close-loop V/F control (VF+PG), general flux vector control, sensorless vector control (SVC), close-loop vector control (FOC+PG), torque control (TQC+PG). | |-------------|-----------------------------------|---| | Out | put frequency ra | nge 0~650.00Hz | | | Digit se | ting The resolution is 0.01Hz. | | set | uency
ting
ution Analog s | 0.01Hz/60Hz (Terminal 2: -10~+10V/13bit) 0.015Hz/60Hz (Terminal 2: 0~±10V/12bit, Terminal 3: 0~10V, 4-20mA/12bit) 0.03Hz/60Hz (Terminal 2: 0, 3; 0~5V/11bit) 0.06Hz/60Hz (Terminal 4: 0~10V, 4-20Ma/10bit) 0.12Hz/60Hz (Terminal 4: 0~5V/9bit) | | | tput Digit se | ting Maximum target frequency ±0.01%. | | | racy Analog s | etting Maximum target frequency ±0.1%. | | Sp | eed control ran | IM: WhenSVC, 1:200; when FOC+PG, 1:1000.
PM: When SVC,1:20; when FOC+PG, 1:1000. | | | Start torque | 150% 0.3Hz (SVC), 180% 0Hz (FOC+PG). | | ١ | //F characteristic | Constant torque curve, variable torquecurve, five-point curve, VF separation | | | eration / decele | | | | Driving motor | Induction motor (IM), permanent magnet motor (SPM and IPM) | | Stal | I current protec | ion The stalling protection level can be set to 0~400% (06-01(P.22)). The default value is 150%. | | Targ | et frequency se | Parameter unit setting, DC 0~5V/10V signal, DC -10~+10V signal, DC 4~20 mA signal, multiple speed stage level setting, communication setting, HDI setting. | | | PID control | Please refer to08-00~08-01、08-04~08-14 / P.170~P.182 in chapter 4. | | В | uilt-in simple PL | Supports 21 basic instructions and 14 application instructions, including PC editing software; | | Parameter | Operation
monitoring | Output frequency, output current, output voltage, PN voltage, output torque, electronic thermal accumulatio
rate, temperature rising accumulation rate, output power, Analog value input signal, digital input and output
terminal status; alarm history 12 groups at most, the last group of alarm message is recorded. | | eter unit | LED indication (10) | Forward rotation indication lamp, reverse rotation indication lamp, frequency monitoring indication lamp, not voltage monitoring indication lamp, new rotage monitoring indication lamp, PLC indication lamp, NET indication lamp, PLC indication lamp and MON monitoring indication lamp. | | Com | munication fund | RS-485 communication, can select Shihlin/Modbus communication protocol, communication speed38400bp
or below, built-in CanOpenprotocol(SA3-CP301 expanded board can be optional), double RJ-45 connectors
(the connector can also be connected to parameter unit) | | Pro | tection mechani
alarm function | Output short circuit protection, Over-current protection, over-voltage protection, under-voltage protection, own protection (06-00(Pg)), IGBT module over-heat protection, communication abnormality protection, PTC temperature protection etc, electrolytic capacitor overheat, input and output phase failure, to-earth (ground) leakage currents protection, circuit error detection | | - | Ambient tempe | ature -10 ~ +50oC (non-freezing), please refer to 3.4.5 Class of protection and operation temperature for details. | | | Ambient hum | dity Below 90%Rh (non-condensing). | | 8 | Storage temper | -20 ~ +65oC | | 5 | Surrounding
environmen | | | Environment | | Altitude below 3000 meters, when altitude is above 1,000 m, derate the rated current 2% per 100 m | | ent | Altitude | Note 1: according to the safety of CE certification to meet specification EN61800-5-1, this series of frequency converter, using at an altitude of less than 3000 m, can be installed under the environment that could satisfy the requirement of the overvoltage level II, while using at an altitude of less than 2000 m, can be installed in conditions that could satisfy the requirement of overvoltage level III worse environment. | | | Vibrations | Vibration below 5.9m/s2 (0.6G). | | t | Grade of prote | tion Frame A, B, CIP20 / NEMA TYPE 1, Frame D and above IP00 / UL OPEN TYPE(IP20 option can be selected). | | , | The degree of
environmental po | fution 2 | | ı | Class of protec | | | | national certific | tion CE, C-TICK(in certificating) | Blue text indicate AC drive parameters. For details, please refer to the SA3 instruction manual. ### **Wiring Diagram** #### NOTE - 1. Please refer to the Section 5.4.1 for the applications of external thermal overload relay. - 2. Make sure that 10, -10, SD, SE, 5 and PC are not shorted each other. Factory Automation - 3. The DC resistor between +/P and P1 is optional. Please short +/P and P1 when AC resistor is not used. - 4. The brake resistor connection approach between +/P and PR is for Frame A, B and C only. For connecting the brake unit of Frame D, E, F, G and H to between +/P and -/N, please refer to the Section 3.7.1 for details. - 5. When adding DC reactors, please remove the short circuit piece between P1 and +/P. Please refer to the Section 3.6.4 for the reactor type. 6. Please refer to the Section 5.3.9 for wiring of HDO. ### **Dimensions** Frame A 10 | Frame A | | | | | | | | | | | |---------------------|------------------|------------|-----------|-------------|-----------|------------|------------|------------|--|--| | Model type | (mm) | W1
(mm) | H
(mm) | H1
(mm) | D
(mm) | D1
(mm) | S1
(mm) | S2
(mm) | | | | SA3-043-0.75K/1.5KF | | | | | | | | | | | | SA3-043-1.5K/2.2KF | 1 | | | | | | | | | | | SA3-043-2.2K/3.7KF | 1 | | | | | | | | | | | SA3-043-3.7K/5.5KF | 1 | | | | | | | | | | | SA3-043-5.5K/7.5KF | 130.0 | 116.0 | 250.0 | 236.0 | 170.0 | 51.3 | 6.2 | 6.2 | | | | SA3-023-0.75K/1.5KF | 1 /2005/00/00/00 | 1000000000 | 22/25/102 | 10000000000 | | | | | | | | SA3-023-1.5K/2.2KF | 1 | | | | | | | | | | | SA3-023-2.2K/3.7KF | | | | | | | | | | | | SA3-023-3.7K/5.5KF | 1 | | | | | | | | | | Frame B | Frame B | | | | | | | | | | | |--------------------|-----------|------------|-----------|------------|-----------|------------|------------|-----------|--|--| | Model type | W
(mm) | W1
(mm) | H
(mm) | H1
(mm) | D
(mm) | D1
(mm) | S1
(mm) | S2
(mm | | | | SA3-043-7.5K/11KF | | | | | | | | | | | | SA3-043-11K/15KF | 1 | | | | | | | | | | | SA3-043-15K/18.5KF | 1000 | 473.0 | 220.0 | 202.0 | 1000 | | | | | | | SA3-023-5.5K/7.5KF | 190.0 | 173.0 | 320.0 | 303.0 | 190.0 | 80.5 | 8.5 | 8.5 | | | | SA3-023-7.5K/11KF | 1 | | | | | | | | | | | SA3-023-11K/15KF | 1 | | | | | | | | | | www.seecfa.com # SA3 Series # Dimensions | Frame D | | | | | | | | | | | |------------------|-----------|------------|-----------|------------|-----------|------------|------------|------------|--|--| | Model type | W
(mm) | W1
(mm) | H
(mm) | H1
(mm) | D
(mm) | D1
(mm) | S1
(mm) | S2
(mm) | | | | SA3-043-37K/45KF | | | | | | | | | | | | SA3-043-45K/55KF | 7 | | | | | | | | | | | SA3-043-55K/75KF | 7 | | | | | | | | | | | SA3-043-75K/90KF | 330.0 | 245.0 | 550.0 | 525.0 | 275.0 | 137.5 | 11.0 | 11.0 | | | | SA3-023-22K/30KF | 1 | | | | | | | | | | | SA3-023-30K/37KF | 1 | | | | | | | | | | | SA3-023-37K/45KF | 7 | | | | | | | | | | | Frame E | Frame E | | | | | | | | | | | |--------------------|-----------|------------|-----------|------------|-----------|------------|------------|------------|--|--|--| | Model type | W
(mm) | W1
(mm) | H
(mm) | H1
(mm) | D
(mm) | D1
(mm) | S1
(mm) | S2
(mm) | | | | | SA3-043-90K/110KF | | | | | | | | | | | | | SA3-043-110K/132KF | 370.0 | 295.0 | 589.0 | 560.0 | 300.0 | 137.5 | 11.0 | 11.0 | | | | | SA3-023-45K/55KF | 3/0.0 | 295.0 | 589.0 | 560.0 | 300.0 | 137.5 | 11.0 | 11.0 | | | | | SA3-023-55K/75KF | 1 | | | | | | | | | | | Frame F | Frame F | | | | | | | | | | | |--|-----------|------------|-----------|------------|-----------|------------|------------|------------|------------|--| | Model type | W
(mm) | W1
(mm) | H
(mm) | H1
(mm) | D
(mm) | D1
(mm) | S1
(mm) | S2
(mm) | S3
(mm) | | | SA3-043-132K/160KF
SA3-023-75K/90KF | | | | | | 145.5 | | | | | # Dimensions | Frame G | | | | | | | | | | |--------------------|-----------|------------|-----------|------------|-----------|------------|------------|------------|------------| | Model type | W
(mm) | W1
(mm) | H
(mm) | H1
(mm) | D
(mm) | D1
(mm) | S1
(mm) | S2
(mm) | S3
(mm) | | SA3-043-160K/185KF | | | | | | | | | | | SA3-043-185K/220KF | F00.0 | 1000 | 0700 | 0500 | 2000 | 150.0 | 13.0 | 25.0 | 13.0 | | SA3-043-220K/250KF | 500.0 | 180.0 | 870.0 | 850.0 | 360.0 | 150.0 | 13.0 | 25.0 | 15.0 | | SA3-043-250K/280KF | 1 | | | | | | | | | | Frame H | | | | | | | | | | |--|-----------|------------|-----------|------------|-----------|------------|------------|------------|------------| | Model type | W
(mm) | W1
(mm) | H
(mm) | H1
(mm) | D
(mm) | D1
(mm) | S1
(mm) | S2
(mm) | S3
(mm) | | SA3-043-280K/315KF
SA3-043-315K/355KF | 600.0 | 230.0 | 1000.0 | 980.0 | 400.0 | 181.5 | 13.0 | 25.0 | 13.0 |