

YASKAWA AC Drive High Performance Vector Control A1000

200 V CLASS, 0.4 to 110 kW 400 V CLASS, 0.4 to 630 kW

Certified for SO9001 and SO14001

JQA-0422 JQA-EM0498

The Birth of Yaskawa's Ace Drive

Offering limitless possibilities....

A top quality drive: silent, beautiful, and incredibly powerful. Perfectly designed functions open a new field with A1000. A product only possible from Yaskawa, knowing everything there is to know about the world of drive technology to create the most efficient operation possible with an inverter drive. You just have to try it to know how easy it is to use. High level, Yaskawa quality. Integrating the latest vector control technology in a general-purpose drive with the performance of a higher order demanded by the drives industry. A1000 is the answer to user needs, carrying on the Yaskawa traditions of absolute quality in this next generation product line.

The Answer is Along Along Content of the Answer is the second sec

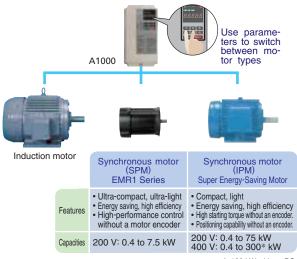
Contents

Features	4	
Features for Every Application	10	
Product Lineup	14	
Model Selection	15	
Software Functions	16	
Parameter List	18	
Basic Instructions	24	
Standard Specifications	26	
Standard Connection Diagram	28	
Dimensions	30	
Fully-Enclosed Design	32	
Peripheral Devices and Options	34	
Application Notes	58	
YASKAWA AC Drive Series	64	
Global Service Network	65	

The Drive for a Greener World

Motor Drive Performance Leading the Pack

Transforming the Application Installation with Unparalleled Performance,



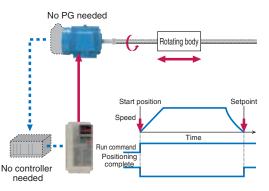
* CE and UL approval still pending for some models

Motor Drive Performance Leading the Pack

The Most Advanced Drive Technology

- Capable of driving any kind of motor. A1000 runs not only induction motors, but also synchronous motors like IPM and SPM motors with high performance current vector control.
- Minimize equipment needed for your business by using the same drive to run induction and synchronous motors.
- Switch easily between motor types with a single parameter setting.

* 160 kW without PG


Rotor Positioning without Motor Encoder

Use an IPM motor to perform position control without motor feedback.

Electrical saliency in IPM motors makes it possible to detect speed, direction, and rotor position without the use of a motor encoder.

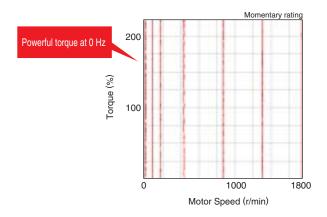
Precision positioning functionality without an upper controller.

Visual programming in DriveWorksEZ lets the user easily create a customized position control sequence, without the use a motor encoder.

Cutting-Edge Torque Characteristics

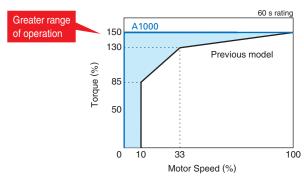
Powerful torque at 0 Hz, without a motor encoder* Once out of reach for AC drives, Yaskawa now offers advanced control features without a motor encoder. Achieve even more powerful starting torque at zero speed with an IPM motor.

* No speed sensors or pole sensors required.



 Closed Loop Vector Control for PM 200% rated torque at 0 r/min*, speed range of 1:1500

* Achieving this torque output requires a larger capacity drive.


Torque characteristics

Advanced Open Loop Vector Control for PM with an IPM motor

Comparing the speed control range

Advanced Open Loop Vector Control for PM with an IPM motor

High-performance current vector control achieves powerful starting torque with an induction motor.

 • Open Loop Vector Control 200% rated torque at 0.3 Hz*, speed range of 1:200
 • Closed Loop Vector Control 200% rated torque at 0 r/min*, speed range of 1:1500

* Achieving this torque output requires a larger capacity drive.

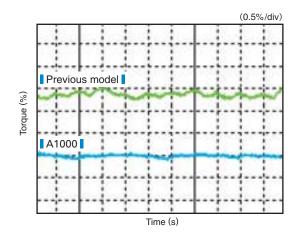
Loaded with Auto-Tuning Features

- Auto-Tuning features optimize drive parameters for operation with induction motors as well as synchronous motors to achieve the highest performance levels possible.
- Perfects not only the drive and motor performance, but also automatically adjusts settings relative to the connected machinery.
 - A variety of ways to automatically optimize drive settings and performance

Tuning the	Motor
Rotational	Applications requiring high starting torque, high
Auto-Tuning	speed, and high accuracy.
Stationary	Applications where the motor must remain con-
Auto-Tuning	nected to the load during the tuning process.
Line-to-Line	For re-tuning after the cable length between
Resistance	the motor and drive has changed, or when
Auto-Tuning	motor and drive capacity ratings differ.
Energy-Saving	For running the motor at top efficiency all the
Auto-Tuning	time.

Tuning the	Tuning the Load					
Inertia Tuning	Optimizes the drive's ability to decelerate the load. Useful for applications using KEB and Feed Forward functions.					
ASR* Gain Auto-Tuning * Automatic Speed Regu- lator	Automatically adjusts ASR gain to better match the frequency reference.					

Note: This type of Auto-Tuning is available only for motors less than 450 kW using an encoder.

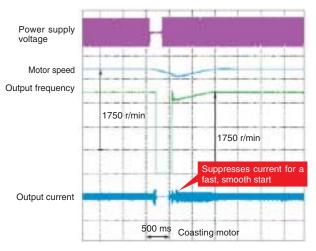

Brand-new Auto-Tuning methods.

A1000 continuously analyzes changes in motor characteristics during run for highly precise speed control.

Smooth Operation

Smooth low speed operation thanks to even better torque ripple suppression.

Tackling Power Loss and Recovery

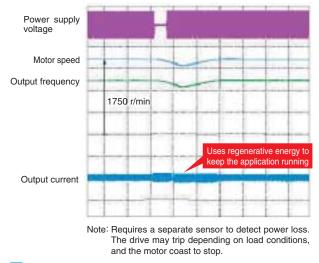

- A1000 offers two ways to handle momentary power loss.
- A1000 is capable of handling momentary power loss for induction motors as well as synchronous motors-- without the use of a motor encoder.

Speed Search

Easily find the speed of a coasting motor for a smooth restart.

Applications

Perfect for fans, blowers, and other rotating, fluid-type applications.



KEB

Keep the motor running without allowing it to coast.

Applications

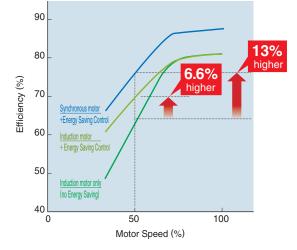
Highly recommended for film lines and other applications requiring continuous operation.

Ride through power loss for up to 2 seconds.*

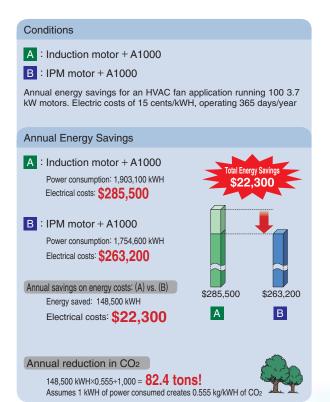
- · Crucial for semi-conductor manufacturers
- · No need to purchase a back-up power supply
- Detects, outputs an undervoltage signal during power loss
- * The Momentary Power Loss Recovery Unit option may be required depending on the capacity of the drive.

The Drive for a Greener World

Energy Saving


Next-Generation Energy Saving

Loaded with the most advanced energy-saving control technology* Energy Saving control makes highly efficient operation possible with an induction motor. * Not available in models 450 kW and above.


Amazing energy saving with a synchronous motor* Combining the high efficiency of a synchronous motor along with A1000's Energy Saving control capabilities allows for unparalleled energy saving.

Not available in models 450 kW and above. Efficiency using a motor drive

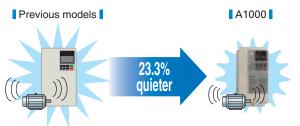
Example shows a 200 V 3.7 kW drive in a fan or pump application.

Examples of energy saving with drives

Environmental Features

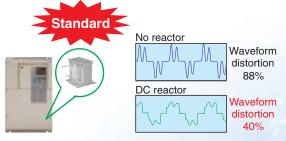
Protective Design

- A variety of protective designs are available to reinforce the drive against moisture, dust, oil mist, vibration, corrosive sulfur gas, conductive particles, and other harsh environments.
- IP54 drip-proof and dustproof options are also offered.* * Available soon


RoHS

All standard products are fully compliant with the EU's RoHS directive.

Noise Reduction


- A1000 uses Yaskawa's Swing PWM function* to suppress electromagnetic and audible motor noise, creating a more peaceful environment.
 - \ast Not available in models 450 kW and above.
 - Comparing our former product line with our new Swing PWM feature

Note: Calculated by comparing peak values during noise generation

Suppressing Power Supply Harmonics

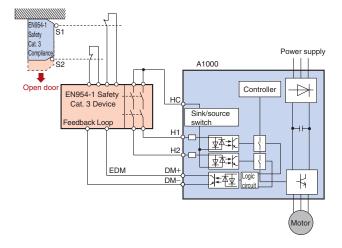
A DC reactor minimizes harmonic distortion, standard on drives 22 kW and above.

Optional features available soon for compatibility with 12-pulse and 18-pulse rectifiers.*

* Requires a separate 3-winding or 4-winding transformer.

Filter option available soon to suppress harmonic distortion.

Safety


Safety Regulations

- All models have a Safe Disable function to stop the motor in accordance with EN954-1 safety category 3, IEC/EN61508 SIL2 requirements.
- An External Device Monitor (EDM) function has also been added to monitor the safety status of the drive.

Safe Disable example: Door switch circuit

A1000 is equipped with 2 input terminals and a single output terminal for connecting a safe disable device. Input: Triggered when either terminal H1 or H2 opens.

Output: EDM output monitors the safety status of the drive.

č,

Controlled Stop Despite Power Loss

Should a power outage occur, A1000 can bring the application to controlled stop quickly and safely using the KEB function.*

* Under development for models 450 kW and above.

Quickly ramp to stop with KEB function

Applications

Previous model

Perfect for spindle drive application and film production lines where stopping methods are crucial to the application to reduce production cost.

Power supply voltage Motor speed Coasting to stop takes time and pers the application Uncontrolled coast to stop A1000 Power supply voltage Motor speed Notor decelerates quickly ct the appli Controlled ramp to stop

The Answer is A1000


7

Even More and More Compact

Yaskawa continues to make applications even smaller by combining the world's smallest drive in its class with the light, efficient design of a synchronous motor.

Comparing drive dimensions

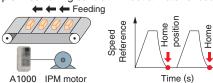
Comparing motor dimensions

Example: 200 V 3.7 kW motor

- Use Side-by-Side installation* for an even more compact setup.
 For models up to 18.5 kW.
- Finless models* also available.

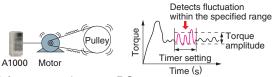
* For release soon

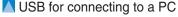
positio


Customize Your Drive

DriveWorksEZ visual programming tool with all models

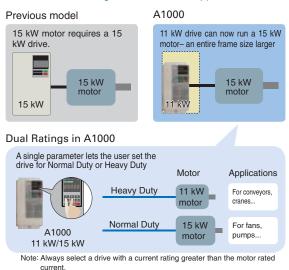
Simply drag and drop icons to completely customize your drive. Create special sequences and detection functions, then load them onto the drive.


Program a customized sequence


Example: Positioning control without a motor encoder

Create customized detection features

Example: Machine weakening analysis using torque pulse detection

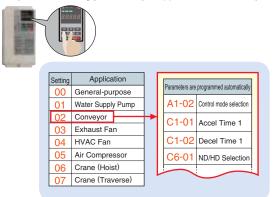


USB port lets the drive connect to a PC

Note: Drives are also equipped with an RJ-45 comm. port that takes the existing WV103 cable used in Yaskawa's previous models. Simply remove the operator keypad for to the RJ-45 connector. Dual Rating allows for an even more compact setup Each drive lets the user choose between Normal Duty or Heavy Duty operation. Depending on the application, A1000 can run a motor an entire frame size larger than our previous model.

Select the drive rating that best fits the application needs

Breeze-Easy Setup


Immediate setup with Application Presets

A1000 automatically sets parameters needed for most major applications. Simply selecting the appropriate application instantly optimizes the drive for top performance, saving enormous time setting up for a trial run.

Example using Application Presets

Selecting "Conveyor" optimizes five parameter settings so the drive is ready to start running your conveyor application immediately.

Variety of Braking Functions

- Overexcitation deceleration brings the motor to an immediate stop without the use of a braking resistor.
- All models up to 30 kW are equipped with a braking transistor for even more powerful braking options by just adding a braking resistor.

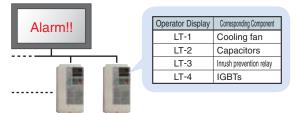
0.	4	18.5	30 kW
Previous Model	Built-in braking transistor up to 18.5	kW	
A1000	Built-in braking transistor up to	o 30 kW	

All Major Serial Network Protocols

- RS-422/485 (MEMOBUS/Modbus at 115.2 kbps) standard on all models.
- Option cards available for all major serial networks used across the globe: PROFIBUS-DP, DeviceNet, CC-Link, CANopen, LONWORKS*, MECHATRO-LINK-II, among others. * Available soon Note: Registered trademarks of those companies.
- Less wiring and space-saving features make for easy installation and maintenance.

Long Life Performance

Ten Years of Durable Performance


- Cooling fan, capacitors, relays, and IGBTs have been carefully selected and designed for a life expectancy up to ten years.*
 - * Assumes the drive is running continuously for 24 hours a day at 80% load with an ambient temperature of 40°C.

Motor Life

Thanks to relatively low copper loss in the rotor and a cool shaft during operation, synchronous motors have a bearing life twice that of induction motors.

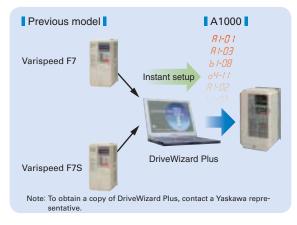
Performance Life Monitors

- Yaskawa's latest drive series is equipped with performance life monitors that notify the user of part wear and maintenance periods to prevent problems before they occur.
 - Drive outputs a signal to the control device indicating components may need to be replaced

Easy Maintenance

The First Terminal Board with a Parameter Backup Function

The terminal block's ability to save parameter setting data makes it a breeze to get the application back online in the event of a failure requiring drive replacement.


A1000 Terminal Block

Parameter		
Name	Number	Setting
ND/HD Selection	C6-01	1
Control Mode Selection	A1-02	0
Frequency Reference Selection 1	b1-01	1
Run Command Selection 1	b1-02	1

Engineering Tool DriveWizard Plus

- Manage the unique settings for all your drives right on your PC.
- An indispensable tool for drive setup and maintenance. Edit parameters, access all monitors, create customized operation sequences, and observe drive performance with the oscilloscope function.
- The Drive Replacement feature in DriveWizard Plus saves valuable time during equipment replacement and application upgrades by converting previous Yaskawa product parameter values to the new A1000 parameters automatically.
 - Drive Replacement Function

Parameter Copy Function

- All standard models are equipped with a Parameter Copy function using the keypad that allows parameter settings to be easily copied from the drive or uploaded for quick setup.
- A USB Copy Unit is also available as an even faster, more convenient way to back up settings and instantly program the drive.

Features for Every Application

A1000 is loaded with functions to match the particular needs of every application.

Cranes

Application Presets

Advantages

Selecting "Crane" from A1000's Application Presets automatically programs A1000 for optimal performance with a crane application. Save valuable setup time and start running immediately.

2 Switch Between Motors

Use the same drive to control one motor for hoisting, another motor for traverse operation. Terminal inputs let the user set up a relay to switch back and forth between motors.

3 Powerful Starting Torque

Powerful torque at low speeds ensures the power needed for the application and prevents problems with slipping.

4 Safety Functions

The Safe Disable function comes standard for compliance with various safety regulations.

5 Visual Programming with DriveWorksEZ

Easily customize the drive using a PC.

6 Performance Life Diagnostic Features

A1000 notifies the user or controller when maintenance may be required for certain components such as the cooling fan or capacitors.

7 Terminal Block with Parameter Backup Function

The terminal block can be transferred to a new drive keeping all terminal wiring intact, and built-in memory backs up all parameter settings. An incredible time saver when replacing a drive.

Functions NEW pplication IM/PM Motor 2 Switch Presets Switch NEW NEW Torque Limit Drive WorksEZ erexcitat Braking Current Vector Zero Servo Function Speed Search Control NEW .ccel/Dece ime Switc Torque Detection Maintenance Monitors KEB Function NEW Functions Indicates a new function in A1000

Fans and Pumps

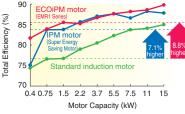
Application Presets

Selecting "Fan" or "Pump" from A1000's Application Presets automatically programs A1000 for optimal performance specific for those applications. Save valuable setup time and start running immediately.

Compact Design

Advantages

- Yaskawa offers a compact solution for both drive and motor.
- Dual ratings
- Selecting Normal Duty makes it possible to use a smaller drive.
- · Combine with a synchronous motor


Run a synchronous motor instead of an induction motor for an even more compact installation.

3 Astounding Efficiency

Combine A1000 with a synchronous motor and save on energy costs.

4 Output Power Pulse Monitor

Pulse output feature can send a signal to the PLC to keep track of kilowatt hours. No extra power meter needed.

Note: Cannot legally be used as proof of power consumption.

5 Speed Search

Yaskawa's unique speed search functions easily carry the motor through momentary power loss. No back-up power supply needed to keep the entire application running smoothly.

6 24 V Control Power Supply Option

Lets the user monitor drive data from a PLC even when the power goes out.

7 Terminal Block with Parameter Backup Function

The terminal block can be transferred to a new drive keeping all terminal wiring intact, and built-in memory backs up all parameter settings. An incredible time saver when replacing a drive.

8 Performance Life Diagnostic Features

A1000 notifies the user or controller when maintenance may be required for certain components such as the cooling fan or capacitors.

9 Low Harmonic Distortion

DC reactor comes standard on all model above 22 kW to minimize harmonic distortion. This built-in feature saves space and wiring.

Functions NEW NEW Momentary Power Loss Applicatior Presets IM/PM Switch Ride-Thru NEW NEW Watt-Hour Frequency Reference Loss Overexcitatio Pulse Monitor Braking Accel/Dece Time Switch Fault Restart Energy Saving NEW Drive Overvoltage Suppression Speed Search WorksEZ EW Overload Frequency Jump PID Contro Fault Preventior NEW requenc eferenc Hold Torque Detectior NEW Indicates a new function in A1000

HVAC

Pump

Features for Every Application

A1000 is loaded with functions to match the particular needs of every application.

Metal Working

KEB Function

Advantages

The KEB function can quickly decelerate the motor to stop in case of a power outage, rather than putting equipment at risk by simply allowing the motor to coast. Easy to program to match application needs.

Overvoltage Suppression

Particularly beneficial for die cushion and other press-type machinery, overvoltage suppression prevents faults and keeps the application running.

3 Visual Programming with DriveWorksEZ Easily customize the drive using a PC.

4 Safety Functions

Safe Disable feature comes standard for compliance with various safety regulations.

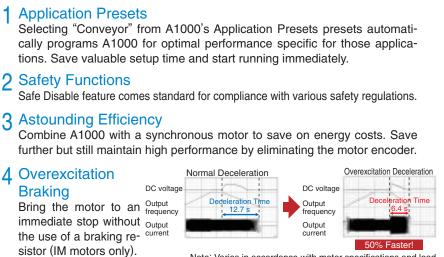
Current Vector Control 5

Protect connected machinery by controlling torque directly through torque detection and torque limits offered by current vector control.

6 Performance Life Diagnostic Features

A1000 notifies the user or controller when maintenance may be required for certain components such as fan or capacitors.

7 Terminal Block with Parameter Backup Function


The terminal block can be transferred to a new drive keeping all terminal wiring intact, and built-in memory backs up all parameter settings. An incredible time saver when replacing a drive.

Conveyor Systems

Visual Programming with DriveWorksEZ Easily customize the drive using a PC.

Easily customize the drive using a PC.

6 24 V Control Power Supply Option

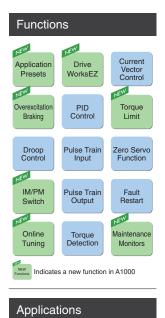
Lets the user monitor drive data from a PLC even when the main power is removed.

7 Verify Menu

5

Advantages

Quickly reference any settings that have been changed from their original default values.


	Changed value	je			
	Name	Parameter	Default	Set Value	
5	Frequency Ref. Selection1	b1-01	1	0	U or F S
۱	Acceleration Time1	C1-01	10.00 s	15.00 s	C ST SE
	Deceleration Time1	C1-02	10.00 s	15.00 s	
			:		

8 Performance Life Diagnostic Features

A1000 notifies the user or controller when maintenance may be required for certain components such as fan or capacitors.

9 Low Harmonic Distortion

DC reactor comes standard on all model above 22 kW to minimize harmonic distortion. This built-in feature saves space and wiring.

Product Lineup

Motor		Three-Pha	ase 200 V				Three-Pha	ase 400 V	
Motor Capacity	Normal D	uty	Heavy Du	uty		Normal Du	uty	Heavy Du	uty
(kW)	Model	Rated Output	Model	Rated Output		Model	Rated Output	Model	Rated Output
0.4			CIMR-AA2A0004	3.2 A			·	CIMR-AA4A0002	1.8 A
0.75	CIMR-AA2A0004	3.5 A	CIMR-AA2A0006	5 A		CIMR-AA4A0002	2.1 A	CIMR-AA4A0004	3.4 A
1.1	CIMR-AA2A0006	6 A	CIMR-AA2A0008*	6.9 A					
1.5	CIMR-AA2A0008*	8 A	CIMR-AA2A0010	8 A		CIMR-AA4A0004	4.1 A	CIMR-AA4A0005	4.8 A
2.2	CIMR-AA2A0010	9.6 A	CIMR-AA2A0012	11 A	-	CIMR-AA4A0005	5.4 A	CIMR-AA4A0007	5.5 A
3.0	CIMR-AA2A0012	12 A	CIMR-AA2A0018*	14 A	-	CIMR-AA4A0007	6.9 A	CIMR-AA4A0009	7.2 A
3.7	CIMR-AA2A0018*	17.5 A	CIMR-AA2A0021	17.5 A		CIMR-AA4A0009	8.8 A	CIMR-AA4A0011	9.2 A
5.5	CIMR-AA2A0021	21 A	CIMR-AA2A0030	25 A		CIMR-AA4A0011	11.1 A	CIMR-AA4A0018	14.8 A
7.5	CIMR-AA2A0030	30 A	CIMR-AA2A0040	33 A		CIMR-AA4A0018	17.5 A	CIMR-AA4A0023	18 A
11	CIMR-AA2A0040	40 A	CIMR-AA2A0056	47 A		CIMR-AA4A0023	23 A	CIMR-AA4A0031	24 A
15	CIMR-AA2A0056	56 A	CIMR-AA2A0069	60 A		CIMR-AA4A0031	31 A	CIMR-AA4A0038	31 A
18.5	CIMR-AA2A0069	69 A	CIMR-AA2A0081	75 A		CIMR-AA4A0038	38 A	CIMR-AA4A0044	39 A
22	CIMR-AA2A0081	81 A	CIMR-AA2A0110	85 A		CIMR-AA4A0044	44 A	CIMR-AA4A0058	45 A
30	CIMR-AA2A0110	110 A	CIMR-AA2A0138	115 A	-	CIMR-AA4A0058	58 A	CIMR-AA4A0072	60 A
37	CIMR-AA2A0138	138 A	CIMR-AA2A0169	145 A	-	CIMR-AA4A0072	72 A	CIMR-AA4A0088	75 A
45	CIMR-AA2A0169	169 A	CIMR-AA2A0211	180 A		CIMR-AA4A0088	88 A	CIMR-AA4A0103	91 A
55	CIMR-AA2A0211	211 A	CIMR-AA2A0250	215 A		CIMR-AA4A0103	103 A	CIMR-AA4A0139	112 A
75	CIMR-AA2A0250	250 A	CIMR-AA2A0312	283 A		CIMR-AA4A0139	139 A	CIMR-AA4A0165	150 A
90	CIMR-AA2A0312	312 A	CIMR-AA2A0360	346 A	-	CIMR-AA4A0165	165 A	CIMR-AA4A0208	180 A
	CIMR-AA2A0360	360 A	CIMR-AA2A0415	415 A	-	CIMR-AA4A0208	208 A	CIMR-AA4A0250	216 A
110	CIMR-AA2A0415	415 A							
132						CIMR-AA4A0250	250 A	CIMR-AA4A0296	260 A
160					-	CIMR-AA4A0296	296 A	CIMR-AA4A0362	304 A
185					-	CIMR-AA4A0362	362 A	CIMR-AA4A0414	370 A
220					-	CIMR-AA4A0414	414 A	CIMR-AA4A0515	450 A
250						CIMR-AA4A0515	515 A		
315					-			CIMR-AA4A0675	605 A
355					-	CIMR-AA4A0675	675 A		
450								CIMR-AA4A0930	810 A
500						CIMR-AA4A0930	930 A		
560					+			CIMR-AA4A1200	1090A
630					-	CIMR-AA4A1200	1200 A		
Model Nui	mber Key SIMR- A	A 2	A 0004	4 F		ΔΔ		* Available	in Japan onl
	C Drive A1000 Serie			÷ †			Desi	gn Revision Order	
No. Region Code	No. Voltage Class	No Customi	zed Specifications No.	Output Current	t A	No. Enclosure Type	No. Er	nvironmental Specificati	ons
T Asia A Japan	2 3-phase, 200-240 Vac 4 3-phase, 380-480 Vac	A Stand		See chart above		A IP00 F NEMA Type1	A Stand C Salt re K Gas	1 i	st, vibration ration ibration

Optimizing Control for Each Application

A1000 offers two separate performance ratings: Normal Duty and Heavy Duty.

Heavy Duty is capable of creating more powerful torque, while Normal Duty allows the drive to operate a larger motor.

Difference between load ratings:

	Normal Duty Rating	Heavy Duty Rating
Parameter settings	C6-01=1	C6-01=0 (default)
Overload tolerance	120% for 60 s	150% for 60 s
Carrier frequency	Low carrier frequency (Swing PWM)*	Low carrier frequency

* Use Swing PWM to quiet undesirable motor noise generated when operating with a low carrier frequency.

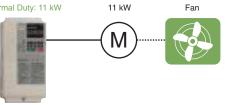
Not available in models 450 kW and above.

Normal Duty Applications

Applications

Heavy Duty Applications

Applications



Selecting a Drive

For a fan application using a 11 kW motor, select CIMR-AA2A0040 and set it for Normal Duty performance (C6-01 = 1).

Model: CIMR-AA2A0040

Normal Duty: 11 kW

Selecting a Drive

For a conveyor application using an 11 kW motor, select CIMR-AA2A0056 and set it for Heavy Duty performance (default).

Model: CIMR-AA2A0056

Heavy Duty: 11 kW

11 kW

Μ

Use the table below to transition from Varispeed F7 and Varispeed F7S to the A1000 series.

Pc	ower Supply		200 V			400 V	
	Model	Varispeed F7	Varispeed F7S	A1000	Varispeed F7	Varispeed F7S	A1000
	woder	CIMR-F7A2	CIMR-F7S2	CIMR-AA2A	CIMR-F7A4	CIMR-F7S4[[]]]	CIMR-AA4A
Арр	licable Motor	Induction Motor	Synchronous Motor	Induction Motor Synchronous Motor	Induction Motor	Synchronous Motor	Induction Motor Synchronous Motor
	0.4	0P4	0P4	0004	0P4	0P4	0002
	0.75	0P7	0P7	0006	0P7	0P7	0004
	1.5	1P5	1P5	0010	1P5	1P5	0005
	2.2	2P2	2P2	0012	2P2	2P2	0007
	3.7	3P7	3P7	0021	3P7	3P7	0011
	5.5	5P5	5P5	0030	5P5	5P5	0018
Applicable Motor Capacity (kW)	7.5	7P5	7P5	0040	7P5	7P5	0023
× ×	11	011	011	0056	011	011	0031
acit	15	015	015	0069	015	015	0038
Cap	18.5	018	018	0081	018	018	0044
or	22	022	022	0110	022	022	0058
Mot	30	030	030	0138	030	030	0072
e le	37	037	037	0169	037	037	0088
cab	45	045	045	0211	045	045	0103
ildd	55	055	055	0250	055	055	0139
A 1	75	075	075	0312	075	075	0165
Мах.	90	090	-	0360	090	090	0208
	110	110	-	0415	110	110	0250
	132	-	-	-	132	132	0296
	160	-	-	-	160	160	0362
	185	-	-	-	185	220	0414
	220	-	-	-	220	300	0515
	315	-	-	-	300	300	0675

Software Functions

Loaded with software functions just right for your application.

New New software available to upgrade from F7 to A1000, automatically matching function and sequence settings. Note: Maior functions listed below

No need to struggle with difficult parameters and complex calculations. Parameters are set instantly simply by selecting the appropriate Application Preset.

Functions at Start and Stop

Overexcitation

Braking

NEW

Optimal deceleration without needing to set the deceleration time. Drive slows the application smoothly controlling DC bus voltage.

Perfect for applications with high load inertia that rarely need to be stopped. Stop quickly: 50% faster without the use of a braking resistor.

Note: Stopping times may vary based on motor characteristics.

Start a coasting motor.

Automatically brings a coasting motor back to the target frequency without using a motor encoder.

Accelerate and decelerate

smoothly with large inertia loads. Drive prevents speed loss by holding the output frequency at a constant level during acceleration and deceleration.

Switch easily between accel/decel times. Switch acceleration and deceleration rates when running two motors from the same drive, or assign specific accel/decel rates when operating at high speed or at low speed.

Reference Functions

Limit motor speed.

Set speed limits and eliminate the need for extra peripheral devices and extraneous hardware.

Skip over troublesome resonant frequencies. Drive can be programmed to avoid machine resonance problems by avoiding constant speed operation at certain speeds.

Frequency Reference Hold

Improved operability. Momentarily hold the operating frequency

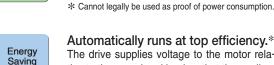
during acceleration or deceleration as the load is lowered or raised.

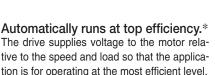
Balances the load automatically between motors. Calculates the ratio of the load torque

and adjusts motor speed accordingly.

Functions for Top Performance

er consumption.*




Run both IM and PM motors with a single drive. The most advanced motor drive technology can run both IM and PM motors, allowing for even greater energy savings and a more compact setup.

No extra watt hour meter needed.

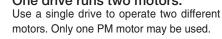
A pulse output lets the user monitor pow-

* Not available in models 450 kW and above.

Enables high-precision operation. Automatically adjusts resistance between motor conductors during operation, thus improving speed accuracy when there are motor temperature fluctuations. This function is active only for Open Loop Vector Control.

Achieve high levels of performance. The drive comes with current vector control capabilities for high performance applications.

Customize the perfect drive to fit your needs. Upper controller circuitry and drive I/O terminals can be programmed so that extra hardware is no longer needed. Dragand-drop. Visual programming makes customization a breeze.



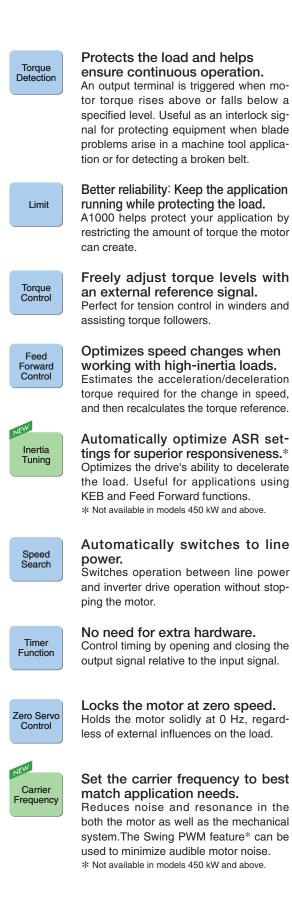
Motor 2

Switch

output frequency for precise control of pressure, flow, or other variables. One drive runs two motors.

The internal PID controller fine-tunes the

Automatic PID control.


Improved operability.

Use the Pulse Train Input to control not only the frequency reference, but also PID feedback and PID input.

Improved monitor functions.

Pulse output lets the user observe everything from the frequency reference and output frequency to motor speed, softstart output frequency, PID feedback, and PID input.

Keeps the application running.

Maintains continuous operation even if the controller fails or frequency reference is lost. An indispensable feature for large HVAC applications.

Keep running when a fault occurs. A1000 has full self-diagnostic features and can restart the application in the event of a fault. Up to 10 restarts possible.

Protective Functions

Keep running even during a momentary loss in power. A1000 automatically restarts the motor

and keeps the application going in the event of a power loss.

Avoid overvoltage trip.

Effective for punching presses and crank shafts where repetitive motion creates large amounts of regenerative energy. The drive increases or decreases the frequency in correspondence with regen levels to prevent overvoltage from occurring.

Prevents overload faults to keep the application running at all times. Ensures continuous operation during sudden changes in the load that may briefly rise above overload levels and would otherwise shut the application down.

Monitor actual speed of the motor and load.

Monitors let the user keep track of motor rotations and line speed.

Save parameter setting to the digital operator.

Copy all parameter settings to the operator keypad, and then transfer those settings to another drive. Saves valuable setup and maintenance time.

Notifies the user when maintenance may be required.

An output signal is triggered when certain components such as the cooling fan or capacitors are nearing their expected performance life.

Decelerate to stop when the power goes out.*

A1000 uses regenerative energy from the motor to bring the application to a stop, rather than simply letting it coast. * Currently under development for models 450 kW and above.

Software Functions

17

Parameter List

Function	No.	Name	Range	Default	Changes during Run
ers	A1-00	Language Selection	0 to 7	1*1	0
Initialization Parameters	A1-01	Access Level Selection	0 to 2	2*2	0
arar	A1-02	Control Method Selection	0,1,2,3,5,6,7	2*1	×
Ъ	A1-03	Initialize Parameters	0 to 5550	0	×
atio	A1-04	Password	0 to 9999	0	× ×
aliz	A1-05 A1-06	Password Setting Application Preset	0 to 9999 0 to 7	0	×
Initi	A1-00	DWEZ Function Selection	0 to 2	0	×
	A2-01	DWEZ Function Ocicculon	0102	0	
netei	to	User Parameters, 1 to 32	A1-00 to	*2	×
aran	A2-32		o4-13	-	
User Parameters	A2-33	User Parameter Automatic Selection	0, 1	1*2	×
	b1-01	Frequency Reference Selection 1	0 to 4	1	×
	b1-02	Run Command Selection 1	0 to 3	1	×
ion	b1-03	Stopping Method Selection	0 to 3*3	0	×
Operation Mode Selection	b1-04	Reverse Operation Selection	0, 1	0	×
Se	b1-05	Action Selection below Minimum Output Frequency	0 to 3	0	×
ode	b1-06	Digital Input Reading	0, 1	1	×
Σ	b1-07	LOCAL/REMOTE Run Selection	0, 1	0	×
atio	b1-08	Run Command Selection while in Programming Mode	0 to 2	0	×
pera	b1-14	Phase Order Selection	0, 1	0	×
0	b1-15	Frequency Reference Selection 2	0 to 4	0	×
	b1-16 b1-17	Run Command Selection 2	0 to 3	0	× ×
	b1-17 b2-01	Run Command at Power Up	0, 1 0.0 to 10.0	0 *3	×
l d kinç	b2-01	DC Injection Braking Start Frequency DC Injection Braking Current	0.0 to 10.0	本3 50%	×
akir Bra	b2-02	DC Injection Braking Time at Start	0.00 to 10.00	0.00 s	×
DC Injection Braking and Short Circuit Braking	b2-00	DC Injection Braking Time at Stop	0.00 to 10.00	*3	×
Circ	b2-08	Magnetic Flux Compensation Capacity	0 to 1000	0%	×
njec	b2-12	Short Circuit Brake Time at Start	0.00 to 25.50	0.00 s	×
LO T	b2-13	Short Circuit Brake Time at Stop	0.00 to 25.50	0.50 s	×
and	b2-18	Short Circuit Braking Current	0.0 to 200.0	100.0%	×
	b3-01	Speed Search Selection at Start	0, 1	*3	×
	b3-02	Speed Search Deactivation Current	0 to 200	*3	×
	b3-03	Speed Search Deceleration Time	0.1 to 10.0	2.0 s	×
	b3-04	V/f Gain during Speed Search	10 to 100	*4	×
ç	b3-05	Speed Search Delay Time	0.0 to 100.0	0.2 s	×
Speed Search	b3-06	Output Current 1 during Speed Search	0.0 to 2.0	*4	×
pa	b3-10	Speed Search Detection Compensation Gain	1.00 to 1.20	1.05	×
Spe	b3-14	Bi-Directional Speed Search Selection	0, 1	*3	×
	b3-17	Speed Search Restart Current Level	0 to 200	150%	×
	b3-18 b3-19	Speed Search Restart Detection Time Number of Speed Search Restarts	0.00 to 1.00 0 to 10	0.10 s 3	×
	b3-24	Speed Search Method Selection	0,1	0	×
	b3-25	Speed Search Wait Time	0.0 to 30.0	0.5 s	×
ay er	b4-01	Timer Function On-Delay Time	0.0 to 3000.0	0.0 s	×
Delay Timer	b4-02	Timer Function Off-Delay Time	0.0 to 3000.0	0.0 s	×
	b5-01	PID Function Setting	0 to 4	0	×
	b5-02	Proportional Gain Setting (P)	0.00 to 25.00	1.00	0
	b5-03	Integral Time Setting (I)	0.0 to 360.0	1.0 s	0
	b5-04	Integral Limit Setting	0.0 to 100.0	100.0%	0
	b5-05	Derivative Time (D)	0.00 to 10.00	0.00 s	0
	b5-06	PID Output Limit	0.0 to 100.0	100.0%	0
	b5-07	PID Offset Adjustment	-100.0 to 100.0	0.0%	0
PID Control	b5-08	PID Primary Delay Time Constant	0.00 to 10.00	0.00 s	0 ¥
0 Č	b5-09 b5-10	PID Output Level Selection PID Output Gain Setting	0, 1 0.00 to 25.00	0	× ×
۵L	b5-10 b5-11	PID Output Gain Setting PID Output Reverse Selection	0.00 10 25.00	0	×
-	b5-12	PID Feedback Loss Detection Selection	0, 1 0 to 5	0	×
	b5-13	PID Feedback Low Detection Level	0 to 100	0%	×
	b5-14	PID Feedback Low Detection Time	0.0 to 25.5	1.0 s	×
	b5-15	PID Sleep Function Start Level	0.0 to 400.0	*3	×
	b5-16	PID Sleep Delay Time	0.0 to 25.5	0.0 s	×
	b5-17	PID Accel/Decel Time	0 to 6000.0	0.0 s	×
	b5-18	PID Setpoint Selection	0, 1	0	×
	- otroto	s are listed on page 23.			

Function	No.	Name	Range	Default	Cha durir
	b5-19	PID Setpoint Value	0.00 to 100.00	0.00%	
	b5-20	PID Setpoint Scaling	0 to 3	1	
	b5-34	PID Output Lower Limit	-100.0 to 100.0	0.0%	
lo	b5-35	PID Input Limit	0.0 to 1000.0	1000.0%	
PID Control	b5-36	PID Feedback High Detection Level	0 to 100	100%	
D	b5-37	PID Feedback High Detection Time	0.0 to 25.5	1.0 s	
Ы	b5-38	PID Setpoint User Display	1 to 60000	dep. on	
	b5-39	PID Setpoint Display Digits	0 to 3	b5-20	
	b5-40	Frequency Reference Monitor Content during PID	0, 1	0	
ion	b6-01	Dwell Reference at Start	0.0 to 400.0	*3	
Dwell Function	b6-02	Dwell Time at Start	0.0 to 10.0	0.0 s	
ell F	b6-03	Dwell Frequency at Stop	0.0 to 400.0	*3	
Dw	b6-04	Dwell Time at Stop	0.0 to 10.0	0.0 s	
d lo	b7-01	Droop Control Gain	0.0 to 100.0	0.0%	
Droop Control	b7-02	Droop Control Delay Time	0.03 to 2.00	0.05 s	
ΟŬ	b7-03	Droop Control Limit Selection	0, 1	1	
	b8-01	Energy Saving Control Selection	0, 1	*3	
	b8-02	Energy Saving Gain	0.0 to 10.0	*3	
aving	b8-03	Energy Saving Control Filter Time Constant	0.00 to 10.00	*2	
Energy Saving	b8-04	Energy Saving Coefficient Value	0.00 to 655.00	*4 dep. on	
ш				E2-11	
	b8-05	Power Detection Filter Time	0 to 2000	20 ms	
		Search Operation Voltage Limit	0 to 100	0%	
Zero Servo	b9-01	Zero Servo Gain	0 to 100	5	
S, Z	b9-02	Zero Servo Completion Width	0 to 16383	10	
es	C1-01	Acceleration Time 1	0.0 to 6000.0*2	10.0 s	
ЩШ	C1-02	Deceleration Time 1	0.0 to 6000.0*2	10.0 s	
ion	C1-03	Acceleration Time 2	0.0 to 6000.0*2	10.0 s	
erat	C1-04	Deceleration Time 2	0.0 to 6000.0*2	10.0 s	
scel	C1-05	Acceleration Time 3 (Motor 2 Accel Time 1)	0.0 to 6000.0*2	10.0 s	
d De	C1-06	Deceleration Time 3 (Motor 2 Decel Time 1)	0.0 to 6000.0*2	10.0 s	
and	C1-07	Acceleration Time 4 (Motor 2 Accel Time 2)	0.0 to 6000.0*2	10.0 s	
Acceleration and Deceleration Times	C1-08	Deceleration Time 4 (Motor 2 Decel Time 2)	0.0 to 6000.0*2	10.0 s	
lera	C1-09	Fast Stop Time	0.0 to 6000.0*2	10.0 s	
cce	C1-10	Accel/Decel Time Setting Units	0, 1	1	
A	C1-11	Accel/Decel Time Switching Frequency	0.0 to 400.0	*3	
ics	C2-01	S-Curve Characteristic at Accel Start	0.00 to 10.00	*3	
S-Curve aracterist	C2-02	S-Curve Characteristic at Accel End	0.00 to 10.00	0.20 s	
S-Curve laracteristics	C2-03	S-Curve Characteristic at Decel Start	0.00 to 10.00	0.20 s	
ъ	C2-04	S-Curve Characteristic at Decel End	0.00 to 10.00	0.00 s	
	C3-01	Slip Compensation Gain	0.0 to 2.5	*3	
	C3-02	Slip Compensation Primary Delay Time	0 to 10000	*3	
	C3-03	Slip Compensation Limit	0 to 250	200%	
	C3-04	Slip Compensation Selection during Regeneration	0 to 2	0	
uo	C3-05	Output Voltage Limit Operation Selection	0, 1	0	
sati	C3-16	Output Voltage Limit Start (Modulation)	70.0 to 90.0	85.0%	
nəc	C3-17	Output Voltage Limit Max (Modulation)	85.0 to 100.0	90.0%	
luo	C3-18	Output Voltage Limit Level	30.0 to 100.0	90.0%	
Slip Compensation	C3-21	Motor 2 Slip Compensation Gain	0.00 to 2.50	dep. on E3-01	
	C3-22	Motor 2 Slip Compensation Primary Delay Time	0 to 10000	dep. on E3-01	
	C3-23	Motor 2 Slip Compensation Limit	0 to 250	200%	-
	C3-24	Motor 2 Slip Compensation Selection during Regeneration	0 to 2	0	
Ę	C4-01	Torque Compensation Gain	0.00 to 2.50	*3	-
atic	C4-02	Torque Compensation Primary Delay Time1	0 to 60000	*3 *4	-
sue	C4-02	Torque Compensation at Forward Start	0.0 to 200.0	0.0%	-
mpe	C4-04	Torque Compensation at Reverse Start	-200.0 to 0.0	0.0%	-
Torque Compensation	C4-04	Torque Compensation Time Constant	0 to 200	10 ms	
0		Torque Compensation Primary Delay Time 2	0 to 10000	150 ms	-
n.	C4-06				

Refer to the A1000 Technical Manual for details.

Note: Footnotes are listed on page 23.

Function	No.	Name	Range	Default	Change during F
	C5-01	ASR Proportional Gain 1	0.00 to 300.00*3	*3	0
	C5-02	ASR Integral Time 1	0.000 to 10.000	*3	0
	C5-03	ASR Proportional Gain 2	0.00 to 300.00*³	*3	0
İ	C5-04	ASR Integral Time 2	0.000 to 10.000	*3	0
	C5-05	ASR Limit	0.0 to 20.0	5.0%	×
[C5-06	ASR Primary Delay Time Constant	0.000 to 0.500	*3	×
	C5-07	ASR Gain Switching Frequency	0.0 to 400.0	*3	×
	C5-08	ASR Integral Limit	0 to 400	400%	×
	C5-12	Integral Value during Accel/Decel	0, 1	0	×
(ASR	C5-17	Motor Inertia	0.0001 to 600.00	*2 dep. on E5-01	×
ator	C5-18	Load Inertia Ratio	0.0 to 6000.0	1.0	×
Regula	C5-21	Motor 2 ASR Proportional Gain 1	0.00 to 300.00*3	dep. on E3-01	0
peed F	C5-22	Motor 2 ASR Integral Time 1	0.000 to 10.000	dep. on E3-01	0
Automatic Speed Regulator (ASR)	C5-23	Motor 2 ASR Proportional Gain 2	0.00 to 300.00*3	dep. on E3-01	0
Autor	C5-24	Motor 2 ASR Integral Time 2	0.000 to 10.000	dep. on E3-01	0
	C5-25	Motor 2 ASR Limit	0.0 to 20.0	5.0%	×
	C5-26	Motor 2 ASR Primary Delay Time Constant	0.000 to 0.500	dep. on E3-01	×
	C5-27	Motor 2 ASR Gain Switching Frequency	0.0 to 400.0	0.0 Hz	×
	C5-28	Motor 2 ASR Integral Limit	0 to 400	400%	×
	C5-32	Integral Operation during Accel/ Decel for Motor 2	0, 1	0	×
	C5-37	Motor 2 Inertia	0.0001 to 600.00	*2	×
	C5-38	Motor 2 Load Inertia Ratio	0.0 to 6000.0	1.0	×
	C6-01	Drive Duty Selection	0, 1	0	×
	C6-02	Carrier Frequency Selection	1 to F	*2	×
arrier quency	C6-03	Carrier Frequency Upper Limit	1.0 to 15.0	*2	×
Carrier	C6-04	Carrier Frequency Lower Limit	1.0 to 15.0	*2	×
D E	C6-05	Carrier Frequency Proportional Gain	0 to 99	*2	×
	C6-09	Carrier Frequency during Rotation- al Auto-Tuning	0, 1	0	×
	d1-01	Frequency Reference 1			0
	d1-02	Frequency Reference 2			0
	d1-03	Frequency Reference 3			0
[d1-04	Frequency Reference 4			0
	d1-05	Frequency Reference 5			0
e	d1-06	Frequency Reference 6			0
ren	d1-07	Frequency Reference 7			0
lefe	d1-08	Frequency Reference 8	0.00 to	0.0011	0
н Ч	d1-09	Frequency Reference 9	400.00*2*3	0.00 Hz	0
Frequency Reference	d1-10	Frequency Reference 10			0
'nbé	d1-11	Frequency Reference 11	1		0
Fre	d1-12	Frequency Reference 12	1		0
	d1-13	Frequency Reference 13	1		0
	d1-14	Frequency Reference 14			0
	d1-15	Frequency Reference 15			
	d1-16	Frequency Reference 16			
	d1-17	Jog Frequency Reference	0.00 to 400.00*2*3	6.00 Hz	0
		Frequency Reference Upper Limit		100.0%	×
, et				100.0/0	. ^
equency Upper/ Lower Limits	d2-01 d2-02	Frequency Reference Lower Limit		0.0%	×

Functi	ion	No.	Name	Range	Default	Changes during Rui
	_	d3-01	Jump Frequency 1			×
þ	ency	d3-02	Jump Frequency 2	0.0 to 400.0	*3	×
nn	edu	d3-03				×
ı	Ē			0.0 to 20.0	*3	×
	_				0	×
				0, 1		
pg	ç				0.00 Hz	0
Ĭ:	ctio	d4-04	Freq. Ref. Bias Accel/Decel (Up/Down 2)	0, 1	0	0
y Reference H Down 2 Functi		d4-05	Freq. Ref. Bias Operation Mode Selection (Up/Down 2)	0, 1	0	0
		d4-06	Freq. Ref. Bias (Up/Down 2)	-99.9 to 100.0	0.0%	×
ency.	Jp/Dc	d4-07	Analog Frequency Reference Fluctuation (Up 2/Down 2)	0.1 to 100.0	1.0%	0
nb :	p	d4-08		0.0 to 100.0	0.0%	0
E E	ar			-99.9 to 0.0	0.0%	0
			· · ·			
		d4-10	Up/Down Freq. Ref. Limit Selection	0, 1	0	×
		d5-01	Torque Control Selection	0, 1	0	×
	Ī	d5-02	Torque Reference Delay Time	0 to 1000	*3	×
	document document		1, 2	1	×	
<u>ه</u> .		-				
Ъ.		-120 to 120	0%	×		
ē,	ပို	d5-05	Speed Limit Bias	0 to 120	10%	×
V/f Pattern for motor 1 V/f Pattern for motor 1 Frequency and Field Forcing Control and Up/Down 2 Function Frequency The sequency and Field Forcing Control and Up/Down 2 Function Frequency	d5-06		0 to 1000	0 ms	×	
	ł	d5-08		0, 1	1	×
Ð	Б			-		
йці́.	rcin			0 to 100	80%	×
äke i	2 F	d6-02	Field Weakening Frequency Limit	0.0 to 400.0	0.0 Hz	×
ž :	Eiel	d6-03	Field Forcing Selection	0, 1	0	×
- <u>lei</u>	B	d6-06	Field Forcing Limit	100 to 400	400%	×
			v	100 10 400	40070	
et	S.					0
SIIC	ap	d7-02	Offset Frequency 2	-100.0 to 100.0	0.0%	0
С	8	d7-03	Offset Frequency 3			0
		E1-01	Input Voltage Setting	155 to 255	200 V *5	×
		E1-03	V/f Pattern Selection	0 to F*3	F*1	×
		E1-04	Maximum Output Frequency	40.0 to 400.0*3	*2 dep. on E5-01 for PM motor	×
		E1-05	Maximum Voltage	0.0 to 255.0*5	*2 dep. on E5-01 for PM motor	×
or motor 1		E1-06	Base Frequency	0.0 to E1-04* ³	*2 dep. on E5-01 for PM motor	×
tern fo		E1-07	Middle Output Frequency	0.0 to E1-04	*2	×
V/f Pat		E1-08	Middle Output Frequency Voltage	0.0 to 255.0*5	*2	×
	-	E1-09	Minimum Output Frequency	0.0 to E1-04*5	*2 dep. on E5-01 for PM motor	×
		E1-10		0.0 to 255.0*5	*2	×
		E1-11	Middle Output Frequency 2	0.0 to E1-04*2	0.0 Hz	×
		E1-12	Middle Output Frequency Voltage 2	0.0 to 255.0*2*5	0.0 V	×
					0.0 V*2	

Parameter List

 $+ \times \times^{\times}$

Parameter List (continued)

Propuest FieldE2-01Motor Rated Current10% to 200% rated current*** inted current*** inted current*** inted current*** inted current***********E2-02Motor No-Load Current0 to E2-01*** ited current***********E2-03Motor Lone do Current0 to 100 to 2000********E2-04Mutor Endesistance0.000 to 0.00*********E2-05Motor Leade penductance0.01 to 400*********E2-07Motor Inon-Core SaturationE2-07 to 0.050.050****E2-08Motor Inon-Core SaturationE2-07 to 0.050.050******E2-09Motor Motor Poles2.01 to 400.0***********E2-01Motor Iron-Core Saturation0.10 to 400.0*********************************	Function	No.	Name	Range	Default	Changes during Run
The second		E2-01	Motor Rated Current	of the drive	*2	×
Top Land Land Land Land E-04 Number of Motor Poles 21 o 48 4 × E2-05 Motor Leakage Inductance 0.000 10 65.000 *2 × E2-06 Motor Leakage Inductance 0.0 to 40.0 *2 × E2-07 Motor Iron-Core Saturation Coefficient 2 E2-07 to 0.75 0.75 × E2-08 Motor Iron-Core Saturation Coefficient 2 0.0 to 10.00 0.0% × E2-09 Motor Iron Loss for Torque Compensation 0 to 655.35 *2 × E3-01 Motor 2 Control Mode Selection 0 to 3 0 × E3-04 Motor 2 Max. Output Frequency 40.0 to 400.01 dep.ont Capon × E3-05 Motor 2 Max. Voltage 0.0 to 255.0* & k5 × E3-06 Motor 2 Mid Output Freq. Voltage 0.0 to 255.0* & k5 × E3-07 Motor 2 Min. Output Freq. Voltage 0.0 to 255.0* & k5 × E3-08 Motor 2 Min. Output Freq. Voltage 0.0 to 255.0* & 0.0*2 <t< td=""><td></td><td>E2-02</td><td>Motor Rated Slip</td><td>0.00 to 20.00</td><td>*2</td><td>×</td></t<>		E2-02	Motor Rated Slip	0.00 to 20.00	*2	×
E2-08 Motor Non-Cole saturation Coefficient 2 E2-07 to 0.75 0.75 × E2-09 Motor Iron Loss for Torque Compensation 0 to 65535 %2 × E2-10 Motor Protocle Saturation Motor Iron Loss for Torque Compensation 0 to 65535 %2 × E2-11 Motor Pated Power 0.00 to 650.00 %2 × E3-04 Motor 2 Max. Output Frequency 40.0 to 400.00 dep. on E3-01 × E3-06 Motor 2 Max. Output Frequency 0.0 to E3-04 dep. on E3-01 × E3-06 Motor 2 Mid Output Freq. 0.0 to E3-04 dep. on E3-01 × E3-08 Motor 2 Mid Output Freq. Voltage 0.0 to E3-04 dep. on E3-01 × E3-08 Motor 2 Mid Output Freq. Voltage 0.0 to E3-04 dep. on E3-01 × E3-10 Motor 2 Mid Output Freq. Voltage 0.0 to E3-04** 0.0*2 × E3-10 Motor 2 Base Voltage 0.0 to E3-04** 0.0*2 × E3-11 Motor 2 Base Voltage 0.0 to E3-04** 0.0*2 × E3-13 M		E2-03	Motor No-Load Current	0 to E2-01*2	*2	×
E2-08 Motor Non-Cole saturation Coefficient 2 E2-07 to 0.75 0.75 × E2-09 Motor Iron Loss for Torque Compensation 0 to 65535 %2 × E2-10 Motor Protocle Saturation Motor Iron Loss for Torque Compensation 0 to 65535 %2 × E2-11 Motor Pated Power 0.00 to 650.00 %2 × E3-04 Motor 2 Max. Output Frequency 40.0 to 400.00 dep. on E3-01 × E3-06 Motor 2 Max. Output Frequency 0.0 to E3-04 dep. on E3-01 × E3-06 Motor 2 Mid Output Freq. 0.0 to E3-04 dep. on E3-01 × E3-08 Motor 2 Mid Output Freq. Voltage 0.0 to E3-04 dep. on E3-01 × E3-08 Motor 2 Mid Output Freq. Voltage 0.0 to E3-04 dep. on E3-01 × E3-10 Motor 2 Mid Output Freq. Voltage 0.0 to E3-04** 0.0*2 × E3-10 Motor 2 Base Voltage 0.0 to E3-04** 0.0*2 × E3-11 Motor 2 Base Voltage 0.0 to E3-04** 0.0*2 × E3-13 M	ters		Number of Motor Poles	2 to 48	4	×
E2-08 Motor Non-Cole saturation Coefficient 2 E2-07 to 0.75 0.75 × E2-09 Motor Iron Loss for Torque Compensation 0 to 65535 %2 × E2-10 Motor Protocle Saturation Motor Iron Loss for Torque Compensation 0 to 65535 %2 × E2-11 Motor Pated Power 0.00 to 650.00 %2 × E3-04 Motor 2 Max. Output Frequency 40.0 to 400.00 dep. on E3-01 × E3-06 Motor 2 Max. Output Frequency 0.0 to E3-04 dep. on E3-01 × E3-06 Motor 2 Mid Output Freq. 0.0 to E3-04 dep. on E3-01 × E3-08 Motor 2 Mid Output Freq. Voltage 0.0 to E3-04 dep. on E3-01 × E3-08 Motor 2 Mid Output Freq. Voltage 0.0 to E3-04 dep. on E3-01 × E3-10 Motor 2 Mid Output Freq. Voltage 0.0 to E3-04** 0.0*2 × E3-10 Motor 2 Base Voltage 0.0 to E3-04** 0.0*2 × E3-11 Motor 2 Base Voltage 0.0 to E3-04** 0.0*2 × E3-13 M	me	E2-05	Motor Line-to-Line Resistance	0.000 to 65.000	*2	×
E2-08 Motor Non-Cole saturation Coefficient 2 E2-07 to 0.75 0.75 × E2-09 Motor Iron Loss for Torque Compensation 0 to 65535 %2 × E2-10 Motor Protocle Saturation Motor Iron Loss for Torque Compensation 0 to 65535 %2 × E2-11 Motor Pated Power 0.00 to 650.00 %2 × E3-04 Motor 2 Max. Output Frequency 40.0 to 400.00 dep. on E3-01 × E3-06 Motor 2 Max. Output Frequency 0.0 to E3-04 dep. on E3-01 × E3-06 Motor 2 Mid Output Freq. 0.0 to E3-04 dep. on E3-01 × E3-08 Motor 2 Mid Output Freq. Voltage 0.0 to E3-04 dep. on E3-01 × E3-08 Motor 2 Mid Output Freq. Voltage 0.0 to E3-04 dep. on E3-01 × E3-10 Motor 2 Mid Output Freq. Voltage 0.0 to E3-04** 0.0*2 × E3-10 Motor 2 Base Voltage 0.0 to E3-04** 0.0*2 × E3-11 Motor 2 Base Voltage 0.0 to E3-04** 0.0*2 × E3-13 M	ara	E2-06		0.0 to 40.0	*2	×
E2-08 Motor Non-Cole saturation Coefficient 2 E2-07 to 0.75 0.75 × E2-09 Motor Iron Loss for Torque Compensation 0 to 65535 %2 × E2-10 Motor Protocle Saturation Motor Iron Loss for Torque Compensation 0 to 65535 %2 × E2-11 Motor Pated Power 0.00 to 650.00 %2 × E3-04 Motor 2 Max. Output Frequency 40.0 to 400.00 dep. on E3-01 × E3-06 Motor 2 Max. Output Frequency 0.0 to E3-04 dep. on E3-01 × E3-06 Motor 2 Mid Output Freq. 0.0 to E3-04 dep. on E3-01 × E3-08 Motor 2 Mid Output Freq. Voltage 0.0 to E3-04 dep. on E3-01 × E3-08 Motor 2 Mid Output Freq. Voltage 0.0 to E3-04 dep. on E3-01 × E3-10 Motor 2 Mid Output Freq. Voltage 0.0 to E3-04** 0.0*2 × E3-10 Motor 2 Base Voltage 0.0 to E3-04** 0.0*2 × E3-11 Motor 2 Base Voltage 0.0 to E3-04** 0.0*2 × E3-13 M	otor 1 F	E2-07		E2-07 to 0.50	0.50	×
E2-10 Motor Iron Loss for Torque Compensation 0 to 65535 *2 × E2-11 Motor Rated Power 0.00 to 650.00 *2 × E3-01 Motor 2 Control Mode Selection 0 to 3 0 × E3-01 Motor 2 Max. Output Frequency 40.0 to 400.0 dep. on E3-01 × E3-05 Motor 2 Max. Voltage 0.0 to E3-04 dep. on E3-01 × E3-06 Motor 2 Base Frequency 0.0 to E3-04 dep. on E3-01 × E3-07 Motor 2 Mid Output Freq. Voltage 0.0 to 250.0*5 %5 × E3-08 Motor 2 Min. Output Freq. Voltage 0.0 to 250.0*5 %5 × E3-09 Motor 2 Min. Output Freq. Voltage 0.0 to 250.0*5 %5 × E3-10 Motor 2 Min. Output Freq. Voltage 0.0 to 250.0*5 0.0*2 × E3-11 Motor 2 Base Voltage 0.0 to 250.0*5 0.0*2 × E3-13 Motor 2 Rated Current 10% to 220.0% *2 × E4-01 Motor 2 Rated Current 10% to 24.4* ×	We	E2-08		E2-07 to 0.75	0.75	×
E2-10 Compensation 0 to 65355 %2 × E2-11 Motor Rated Power 0.00 to 650.00 %2 × E3-01 Motor 2 Control Mode Selection 0 to 3 0 × E3-04 Motor 2 Max. Output Frequency 40.0 to 400.0 dep. on E3-01 × E3-05 Motor 2 Max. Voltage 0.0 to 255.0*5 %5 × E3-06 Motor 2 Mid Output Freq. 0.0 to E3-04 dep. on E3-01 × E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 dep. on E3-01 × E3-08 Motor 2 Min. Output Freq. 0.0 to E3-04 dep. on E3-01 × E3-10 Motor 2 Min. Output Freq. 0.0 to E3-04* dep. on E3-01 × E3-11 Motor 2 Mid Output Frequency Voltage 2 0.0 to 255.0*5 0.0*2 × E3-11 Motor 2 Base Voltage 0.0 to 255.0*5 0.0*2 × E3-13 Motor 2 Rated Current 10% to 200% of the drive rated current*2 × × E4-04 Motor 2 Rated No-Load Current 0 to E4-01*2 ×		E2-09	Motor Mechanical Loss	0.0 to 10.0	0.0%	×
E3-01 Motor 2 Control Mode Selection 0 to 3 0 × E3-04 Motor 2 Max. Output Frequency 40.0 to 400.0 dep. on E3-01 × E3-05 Motor 2 Max. Voltage 0.0 to 255.0*5 *5 × E3-06 Motor 2 Base Frequency 0.0 to E3-04 dep. on E3-01 × E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 dep. on E3-01 × E3-08 Motor 2 Mid Output Freq. 0.0 to E3-04 dep. on E3-01 × E3-09 Motor 2 Min. Output Freq. 0.0 to E3-04 dep. on E3-01 × E3-10 Motor 2 Min. Output Freq. Voltage 0.0 to 255.0*5 dep. on E3-01 × E3-11 Motor 2 Mid Output Frequency Voltage 2 0.0 to 255.0*5 0.0*2 × E3-13 Motor 2 Rated Current 10% to 220% of the drive rated current*2 × × E4-01 Motor 2 Rated Current 10% to 220% of the drive rated current*2 ×2 × E4-02 Motor 2 Rated Current 10% to 200% of the drive rated current*2 ×2 × E4-03		E2-10		0 to 65535	*2	×
E3-04 Motor 2 Max. Output Frequency 40.0 to 400.0 dep. on E3-01 × E3-05 Motor 2 Max. Voltage 0.0 to 255.0% %5 × E3-06 Motor 2 Base Frequency 0.0 to E3-04 dep. on E3-01 × E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 dep. on E3-01 × E3-08 Motor 2 Mid Output Freq. 0.0 to E3-04 dep. on E3-01 × E3-08 Motor 2 Min. Output Freq. 0.0 to E3-04 dep. on E3-01 × E3-10 Motor 2 Min. Output Freq. Voltage 0.0 to E3-04* 0.0*2 × E3-11 Motor 2 Mid Output Frequency 2 0.0 to E3-04* 0.0*2 × E3-11 Motor 2 Mid Output Frequency 2 0.0 to 255.0*5 0.0*2 × E3-13 Motor 2 Rated Current 10% to 200% of the drive rated current*2 × × E4-01 Motor 2 Rated Slip 0.00 to 25.0*5 0.0*2 × E4-04 Motor 2 Rated Slip 0.00 to 20.0*2 ×2 × E4-04 Motor 2 Motor Iron-Core Saturation Coefficient 1		E2-11	Motor Rated Power	0.00 to 650.00	*2	×
Part of the second se		E3-01	Motor 2 Control Mode Selection	0 to 3	0	×
Link Link and a construction Link and a construction E3-06 Motor 2 Base Frequency 0.0 to E3-04 dep. on E3-01 × E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 dep. on E3-01 × E3-08 Motor 2 Mid Output Freq. 0.0 to E3-04 dep. on E3-01 × E3-09 Motor 2 Min. Output Freq. 0.0 to E3-04 dep. on E3-01 × E3-10 Motor 2 Min. Output Freq. Voltage 0.0 to E3-04#3 0.0*2 × E3-11 Motor 2 Mid Output Frequency Voltage 2 0.0 to 255.0*5 0.0*2 × E3-12 Motor 2 Mid Output Frequency Voltage 2 0.0 to 255.0*5 0.0*2 × E3-13 Motor 2 Base Voltage 0.0 to 255.0*5 0.0*2 × E4-01 Motor 2 Rated Current 10% to 200% of the drive rated current*2 ×2 × E4-03 Motor 2 Rated No-Load Current 0 to E4-01*2 *2 × E4-04 Motor 2 Motor Poles 2 to 48 4 × E4-05 Motor 2 Motor Iron-Core Saturation Coefficient 1 0.00 to 65.00		E3-04	Motor 2 Max. Output Frequency	40.0 to 400.0		×
E3-06 Motor 2 Base Frequency 0.0 to E3-04 E3-01 X E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 dep.on E3-01 × E3-08 Motor 2 Min Output Freq. Voltage 0.0 to E3-04 dep.on E3-01 × E3-09 Motor 2 Min. Output Freq. Voltage 0.0 to E3-04 dep.on E3-01 × E3-10 Motor 2 Min. Output Freq. Voltage 0.0 to E3-04 dep.on E3-01 × E3-11 Motor 2 Mid Output Frequency 2 0.0 to E3-04* 0.0*2 × E3-11 Motor 2 Mid Output Frequency Voltage 2 0.0 to 255.0*5 0.0*2 × E3-13 Motor 2 Base Voltage 0.0 to 255.0*5 0.0*2 × E4-01 Motor 2 Rated Current 10% to 200% of the drive rated current*2 ×2 × E4-02 Motor 2 Rated Slip 0.00 to 65.000 *2 × E4-03 Motor 2 Line-to-Line Resistance 0.000 to 65.000 *2 × E4-04 Motor 2 Motor Iron-Core Saturation Coefficient 1 0.00 to 0.50 0.50 × E4-07 Motor 2 Mo		E3-05	Motor 2 Max. Voltage	0.0 to 255.0*5	*5	×
E3-10 Motor 2 Min. Output Freq. Voltage 0.0 to 255.0*5 *5 (bp. 01B341 × E3-11 Motor 2 Mid Output Frequency Voltage 2 0.0 to E3-04*3 0.0*2 × E3-12 Motor 2 Mid Output Frequency Voltage 2 0.0 to 255.0*5 0.0*2 × E3-13 Motor 2 Base Voltage 0.0 to 255.0*5 0.0*2 × E3-13 Motor 2 Base Voltage 0.0 to 255.0*5 0.0*2 × E4-01 Motor 2 Rated Current 10% to 200% of the drive rated current*2 ×2 × E4-02 Motor 2 Rated Slip 0.00 to 20.00*2 *2 × E4-03 Motor 2 Rated No-Load Current 0 to E4-01*2 *2 × E4-04 Motor 2 Line-to-Line Resistance 0.000 to 65.000 *2 × E4-06 Motor 2 Motor Iron-Core Saturation Coefficient 1 0.00 to 0.50 0.50 × E4-07 Motor 2 Motor Iron-Core Saturation Coefficient 2 E4-07 to 0.75 0.75 × E4-08 Motor 2 Motor Iron-Core Saturation Coefficient 1 0.00 to 65.000 *2 × E4-10 <td>5</td> <td>E3-06</td> <td>Motor 2 Base Frequency</td> <td>0.0 to E3-04</td> <td></td> <td>×</td>	5	E3-06	Motor 2 Base Frequency	0.0 to E3-04		×
E3-10 Motor 2 Min. Output Freq. Voltage 0.0 to 255.0*5 *5 (bp. 01B341 × E3-11 Motor 2 Mid Output Frequency Voltage 2 0.0 to E3-04*3 0.0*2 × E3-12 Motor 2 Mid Output Frequency Voltage 2 0.0 to 255.0*5 0.0*2 × E3-13 Motor 2 Base Voltage 0.0 to 255.0*5 0.0*2 × E3-13 Motor 2 Base Voltage 0.0 to 255.0*5 0.0*2 × E4-01 Motor 2 Rated Current 10% to 200% of the drive rated current*2 ×2 × E4-02 Motor 2 Rated Slip 0.00 to 20.00*2 *2 × E4-03 Motor 2 Rated No-Load Current 0 to E4-01*2 *2 × E4-04 Motor 2 Line-to-Line Resistance 0.000 to 65.000 *2 × E4-06 Motor 2 Motor Iron-Core Saturation Coefficient 1 0.00 to 0.50 0.50 × E4-07 Motor 2 Motor Iron-Core Saturation Coefficient 2 E4-07 to 0.75 0.75 × E4-08 Motor 2 Motor Iron-Core Saturation Coefficient 1 0.00 to 65.000 *2 × E4-10 <td>Motor</td> <td>E3-07</td> <td>Motor 2 Mid Output Freq.</td> <td>0.0 to E3-04</td> <td></td> <td>×</td>	Motor	E3-07	Motor 2 Mid Output Freq.	0.0 to E3-04		×
E3-10 Motor 2 Min. Output Freq. Voltage 0.0 to 255.0*5 *5 (bp. 01B341 × E3-11 Motor 2 Mid Output Frequency Voltage 2 0.0 to E3-04*3 0.0*2 × E3-12 Motor 2 Mid Output Frequency Voltage 2 0.0 to 255.0*5 0.0*2 × E3-13 Motor 2 Base Voltage 0.0 to 255.0*5 0.0*2 × E3-13 Motor 2 Base Voltage 0.0 to 255.0*5 0.0*2 × E4-01 Motor 2 Rated Current 10% to 200% of the drive rated current*2 ×2 × E4-02 Motor 2 Rated Slip 0.00 to 20.00*2 *2 × E4-03 Motor 2 Rated No-Load Current 0 to E4-01*2 *2 × E4-04 Motor 2 Line-to-Line Resistance 0.000 to 65.000 *2 × E4-06 Motor 2 Motor Iron-Core Saturation Coefficient 1 0.00 to 0.50 0.50 × E4-07 Motor 2 Motor Iron-Core Saturation Coefficient 2 E4-07 to 0.75 0.75 × E4-08 Motor 2 Motor Iron-Core Saturation Coefficient 1 0.00 to 65.000 *2 × E4-10 <td>ern for</td> <td>E3-08</td> <td colspan="2">Motor 2 Mid Output Freq. Voltage 0.0 to 255.0*5</td> <td></td> <td>×</td>	ern for	E3-08	Motor 2 Mid Output Freq. Voltage 0.0 to 255.0*5			×
E3-10 Motor 2 Min. Output Freq. Voltage 0.0 to 255.0*5 *5 (bp. 01B341 × E3-11 Motor 2 Mid Output Frequency Voltage 2 0.0 to E3-04*3 0.0*2 × E3-12 Motor 2 Mid Output Frequency Voltage 2 0.0 to 255.0*5 0.0*2 × E3-13 Motor 2 Base Voltage 0.0 to 255.0*5 0.0*2 × E3-13 Motor 2 Base Voltage 0.0 to 255.0*5 0.0*2 × E4-01 Motor 2 Rated Current 10% to 200% of the drive rated current*2 ×2 × E4-02 Motor 2 Rated Slip 0.00 to 20.00*2 *2 × E4-03 Motor 2 Rated No-Load Current 0 to E4-01*2 *2 × E4-04 Motor 2 Line-to-Line Resistance 0.000 to 65.000 *2 × E4-06 Motor 2 Motor Iron-Core Saturation Coefficient 1 0.00 to 0.50 0.50 × E4-07 Motor 2 Motor Iron-Core Saturation Coefficient 2 E4-07 to 0.75 0.75 × E4-08 Motor 2 Motor Iron-Core Saturation Coefficient 1 0.00 to 65.000 *2 × E4-10 <td>//f Patt</td> <td>E3-09</td> <td colspan="2">Motor 2 Min. Output Freq. 0.0 to E3-04</td> <td></td> <td>×</td>	//f Patt	E3-09	Motor 2 Min. Output Freq. 0.0 to E3-04			×
Bit Prequency Voltage 2 0.0 to 255.0*5 0.0*2 × E3-12 Motor 2 Base Voltage 0.0 to 255.0*5 0.0*2 × E3-13 Motor 2 Base Voltage 0.0 to 255.0*5 0.0*2 × E3-13 Motor 2 Base Voltage 0.0 to 255.0*5 0.0*2 × E3-10 Motor 2 Base Voltage 0.0 to 255.0*5 0.0*2 × E4-01 Motor 2 Rated Current 10% to 200% of the drive rated current*2 ×2 × E4-02 Motor 2 Rated Slip 0.00 to 20.00*2 *2 × E4-03 Motor 2 Rated No-Load Current 0 to E4-01*2 *2 × E4-04 Motor 2 Line-to-Line Resistance 0.000 to 65.000 *2 × E4-06 Motor 2 Leakage Inductance 0.0 to 40.0 *2 × E4-07 Motor 2 Motor Iron-Core 0.00 to 0.50 0.50 × E4-08 Motor 2 Motor Iron-Core 0.0 to 10.0 0.0% × E4-08 Motor 2 Iron Loss 0.10 to 655.00 *2 × E4-10		E3-10	Motor 2 Min. Output Freq. Voltage	0.0 to 255.0*5		×
E3-12 Frequency Voltage 2 0.0 to 255.0*s 0.0*2 × E3-13 Motor 2 Base Voltage 0.0 to 255.0*s 0.0*2 × E3-13 Motor 2 Base Voltage 0.0 to 255.0*s 0.0*2 × E3-13 Motor 2 Base Voltage 0.0 to 255.0*s 0.0*2 × E4-01 Motor 2 Rated Current 10% to 200% of the drive rated current*2 ×2 × E4-02 Motor 2 Rated Slip 0.00 to 20.00*2 *2 × E4-03 Motor 2 Rated No-Load Current 0 to E4-01*2 *2 × E4-04 Motor 2 Line-to-Line Resistance 0.000 to 65.000 *2 × E4-06 Motor 2 Leakage Inductance 0.0 to 40.0 *2 × E4-07 Motor 2 Motor Iron-Core 0.00 to 0.50 0.50 × E4-08 Motor 2 Iron Loss 0.0 to 65535 *2 × E4-09 Motor 2 Rated Capacity 0.00 to 650.00 *2 × E4-08 Motor 2 Iron Loss 0.10 to 650.00 *2 × E4-1		E3-11	Motor 2 Mid Output Frequency 2	0.0 to E3-04*3	0.0*2	×
State Data and Add state Data and Add state Image: State of the stat		E3-12		0.0 to 255.0*5	0.0*2	×
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		E3-13	Motor 2 Base Voltage	0.0 to 255.0*5	0.0*2	×
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		E4-01	Motor 2 Rated Current	of the drive	*2	×
$\begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \hline \ & \hline \ $		E4-02	Motor 2 Rated Slip	0.00 to 20.00*2	*2	×
E4-08 Motor 2 Motor Iron-Core Saturation Coefficient 2 E4-07 to 0.75 0.75 × E4-09 Motor 2 Mechanical Loss 0.0 to 10.0 0.0% × E4-10 Motor 2 Iron Loss 0.0 to 10.0 0.0% × E4-11 Motor 2 Iron Loss 0 to 65535 *2 × E4-11 Motor 2 Rated Capacity 0.00 to 650.00 *2 × E5-01 Motor Code Selection 0000 to FFFF *2 *1 × E5-02 Motor Rated Capacity 0.10 to 650.00 *1 dep. on E501 × E5-03 Motor Rated Current 10% to 200% of the drive rated current*2 ×1 dep. on E5-01 × E5-04 Number of Motor Poles 2 to 48 *1 dep. on E501 ×	ers	E4-03	Motor 2 Rated No-Load Current	0 to E4-01*2	*2	×
E4-08 Motor 2 Motor Iron-Core Saturation Coefficient 2 E4-07 to 0.75 0.75 × E4-09 Motor 2 Mechanical Loss 0.0 to 10.0 0.0% × E4-10 Motor 2 Iron Loss 0.0 to 10.0 0.0% × E4-11 Motor 2 Iron Loss 0 to 65535 *2 × E4-11 Motor 2 Rated Capacity 0.00 to 650.00 *2 × E5-01 Motor Code Selection 0000 to FFFF *2 *1 × E5-02 Motor Rated Capacity 0.10 to 650.00 *1 dep. on E501 × E5-03 Motor Rated Current 10% to 200% of the drive rated current*2 ×1 dep. on E5-01 × E5-04 Number of Motor Poles 2 to 48 *1 dep. on E501 ×	net	E4-04	Motor 2 Motor Poles	2 to 48	4	×
E4-08 Motor 2 Motor Iron-Core Saturation Coefficient 2 E4-07 to 0.75 0.75 × E4-09 Motor 2 Mechanical Loss 0.0 to 10.0 0.0% × E4-10 Motor 2 Iron Loss 0.0 to 10.0 0.0% × E4-11 Motor 2 Iron Loss 0 to 65535 *2 × E4-11 Motor 2 Rated Capacity 0.00 to 650.00 *2 × E5-01 Motor Code Selection 0000 to FFFF *2 *1 × E5-02 Motor Rated Capacity 0.10 to 650.00 *1 dep. on E501 × E5-03 Motor Rated Current 10% to 200% of the drive rated current*2 ×1 dep. on E5-01 × E5-04 Number of Motor Poles 2 to 48 *1 dep. on E501 ×	arai	E4-05	Motor 2 Line-to-Line Resistance	0.000 to 65.000	*2	×
E4-08 Motor 2 Motor Iron-Core Saturation Coefficient 2 E4-07 to 0.75 0.75 × E4-09 Motor 2 Mechanical Loss 0.0 to 10.0 0.0% × E4-10 Motor 2 Iron Loss 0.0 to 10.0 0.0% × E4-11 Motor 2 Iron Loss 0 to 65535 *2 × E4-11 Motor 2 Rated Capacity 0.00 to 650.00 *2 × E5-01 Motor Code Selection 0000 to FFFF *2 *1 × E5-02 Motor Rated Capacity 0.10 to 650.00 *1 dep. on E501 × E5-03 Motor Rated Current 10% to 200% of the drive rated current*2 ×1 dep. on E5-01 × E5-04 Number of Motor Poles 2 to 48 *1 dep. on E501 ×	2 P	E4-06	Motor 2 Leakage Inductance	0.0 to 40.0	*2	×
E4-08 Saturation Coefficient 2 E4-07 to 0.75 0.75 × E4-09 Motor 2 Mechanical Loss 0.0 to 10.0 0.0% × E4-10 Motor 2 Iron Loss 0 to 65535 *2 × E4-11 Motor 2 Rated Capacity 0.00 to 650.00 *2 × E4-11 Motor Code Selection 0000 to FFFF *2 *1 × E5-01 Motor Rated Capacity 0.10 to 650.00 *1 × E5-02 Motor Rated Capacity 0.10 to 650.00 *1 × E5-03 Motor Rated Current 10% to 200% *1 × E5-03 Motor Rated Current of the drive rated current*2 ×1 × E5-04 Number of Motor Poles 2 to 48 *1 ×	Motor	E4-07		0.00 to 0.50	0.50	×
E4-10 Motor 2 Iron Loss 0 to 65535 *2 × E4-11 Motor 2 Rated Capacity 0.00 to 650.00 *2 × E5-01 Motor Code Selection 0000 to FFFF *2 *1 × E5-02 Motor Rated Capacity 0.10 to 650.00 *1 × E5-03 Motor Rated Capacity 0.10 to 650.00 *1 × E5-03 Motor Rated Current 10% to 200% *1 × E5-03 Motor Rated Current 2 to 48 *1 ×		E4-08		E4-07 to 0.75	0.75	×
E4-11 Motor 2 Rated Capacity 0.00 to 650.00 *2 × 50 E5-01 Motor Code Selection 0000 to FFFF *2 *1 × E5-02 Motor Rated Capacity 0.10 to 650.00 *1 dep on E501 × E5-03 Motor Rated Current 10% to 200% *1 dep on E501 × E5-03 Motor Rated Current 2 to 48 *1 dep on E501 ×		E4-09	Motor 2 Mechanical Loss	0.0 to 10.0	0.0%	×
E5-01 Motor Code Selection 0000 to FFFF *2 *1 × E5-02 Motor Rated Capacity 0.10 to 650.00 *1 dep. on E501 × E5-03 Motor Rated Current 10% to 200% *1 dep. on E501 × E5-04 Number of Motor Poles 2 to 48 *1 dep. on E501 ×		E4-10	Motor 2 Iron Loss	0 to 65535	*2	×
Bit Matrix Motor Rated Capacity 0.10 to 650.00 *1 dep. on E501 × E5-02 Motor Rated Current 10% to 200% of the drive rated current*2 *1 dep. on E501 × E5-03 Motor Rated Current 10% to 200% of the drive rated current*2 *1 dep. on E5-01 × E5-04 Number of Motor Poles 2 to 48 *1 dep. on E501 ×		E4-11	Motor 2 Rated Capacity	0.00 to 650.00	*2	×
E5-04 Number of Motor Poles 2 to 48 dep. on E501 ×	<u>s</u>	E5-01	Motor Code Selection	0000 to FFFF	*2 *1	×
E5-04 Number of Motor Poles 2 to 48 dep. on E501 ×	Setting	E5-02	Motor Rated Capacity	0.10 to 650.00	dep. on E5-01	×
E5-04 Number of Motor Poles 2 to 48 dep. on E501 ×	PM Motor	E5-03	Motor Rated Current	of the drive	dep. on E5-01	×
				2 to 48		×

Function	No.	Name	Range	Default	Changes during Run
	E5-05	Motor Stator Resistance	0.000 to 65.000	* 1 dep. on E5-01	×
sbu	E5-06	Motor d-Axis Inductance	0.00 to	*1	×
otor Setting	E5-07	Motor q-Axis Inductance	*1	×	
1 Moto	E5-09	Motor Induction Voltage Constant 1	0.0 to 2000.0	*1	×
PA	E5-11	Encoder Z Pulse Offset	-180.0 to 180.0	0.0 deg	×
	E5-24	Motor Induction Voltage Constant 2	0.0 to 6500.0	* 1 dep. on E5-01	×
	F1-01	PG 1 Pulses Per Revolution	0 to 60000	*3	×
	F1-02	Operation Selection at PG Open Circuit (PGo)	0, 1	1	×
	Control Sector and the activity of the	1	×		
	F1-04	Operation Selection at Deviation	0 to 3	3	×
	F1-05	PG 1 Rotation Selection	0, 1	*3	×
	F1-06	PG 1 Division Rate for PG Pulse Monitor	1 to 132	1	×
	F1-08	Overspeed Detection Level	0 to 120	115%	×
X3)	F1-09	Overspeed Detection Delay Time	0.0 to 2.0	*3	×
Ģ	F1-10	Excessive Speed Deviation Detection Level	0 to 50	10%	×
3-B3/F	F1-11		0.0 to 10.0	0.5 s	×
(P(F1-12	PG 1 Gear Teeth 1	0 to 1000	0	Х
ard	F1-13	PG 1 Gear Teeth 2	0 to 1000	0	×
O O	F1-14	PG Open-Circuit Detection Time	0.0 to 10.0	2.0 s	Х
ntro	F1-18	dv3 Detection Selection	0 to 10	10	×
ů	F1-19	dv4 Detection Selection	0 to 5000	128	×
ed	F1-20	PG Option Card Disconnect Detection 1	0, 1	1	Х
Spe	F1-21	PG 1 Signal Selection	0, 1	0	Х
G	F1-30	PG Card Option Port for Motor 2 Selection	0, 1	1	×
	F1-31	PG 2 Pulses Per Revolution	0 to 60000	600 ppr	×
	F1-32	PG 2 Rotation Selection	0, 1	0	×
	F1-33	PG 2 Gear Teeth 1	0 to 1000	0	×
	F1-34	PG 2 Gear Teeth 2	0 to 1000	0	×
	F1-35	PG 2 Division Rate for PG Pulse Monitor	1 to 132	1	×
	F1-36	PG Option Card Disconnect Detection 2	0, 1	1	×
	F1-37	PG 2 Signal Selection	0, 1	0	×
og Input (AI-A3)	F2-01		0, 1	0	×
nalo ard	F2-02	Analog Input Option Card Gain	-999.9 to 999.9	100.0%	0
A O	F2-03	Analog Input Option Card Bias	-999.9 to 999.9	0.0%	0
Input N-A3)	F3-01		0 to 7	0	×
Digital Input Card (DI-A3)	F3-03	Digital Input Option DI-A3 Data	0 to 2	2	×
	F4-01	Terminal V1 Monitor Selection	000 to 999	102	×
ard	F4-02	Terminal V1 Monitor Gain	-999.9 to 999.9	100.0%	0
υ Ο	F4-03	Terminal V2 Monitor Selection	000 to 999	103	×
nito A3)	F4-04	Terminal V2 Monitor Gain	-999.9 to 999.9	50.0%	0
Monito AO-A3)	F4-05	Terminal V1 Monitor Bias	-999.9 to 999.9	0.0%	0
Analog Monitor Card (AO-A3)	F4-06	Terminal V2 Monitor Bias	-999.9 to 999.9	0.0%	0
Ana	F4-07	Terminal V1 Signal Level	0, 1	0	×
	F4-08	Terminal V2 Signal Level	0, 1	0	×
(3)	F5-01	Terminal P1-PC Output Selection	0 to 192	0	×
4-0	F5-02	Terminal P2-PC Output Selection	0 to 192	1	×
ğ	F5-03	Terminal P3-PC Output Selection	0 to 192	2	×
Digital Output Card (DO-A3)	F5-04	Terminal P4-PC Output Selection	0 to 192	4	×
rt C	F5-05	Terminal P5-PC Output Selection	0 to 192	6	×
ltpt	F5-06	Terminal P6-PC Output Selection	0 to 192	37	×
õ	F5-07	Terminal M1-M2 Output Selection	0 to 192	F	×
ta	F5-08	Terminal M3-M4 Output Selection	0 to 192	F	×
<u>a</u>					

Function	No.	Name	Range	Default	Changes during Run	
	F6-01	Communications Error Operation Selection	0 to 3	1	×	
	F6-02	External Fault from Comm. Option Detection Selection	0, 1	0	×	
	F6-03	External Fault from Comm. Option Operation Selection	0 to 3	1	×	
	F6-04	bUS Error Detection Time	0.0 to 5.0	2.0 s	×	
	F6-06	Torque Reference/Torque Limit Selection from Communications Option	0, 1	0	×	
	F6-07	Multi-Step Speed during NetRef/ComRef	0,1	0	×	
	F6-08 F6-10	Reset Communication Parameters CC-Link Node Address	0,1 0 to 64	0*1 0	×	
ard	F6-11	Communication Speed	0 to 4	0	×	
Communication Option Card	F6-14	CC-Link bUS Error Auto Reset	0, 1	0	×	
Opti	F6-20	MECHATROLINK-II Node Address	20 to 3FH	21	×	
ion (F6-21	MECHATROLINK-II Frame Length	0,1	0	×	
licat	F6-22 F6-23	MECHATROLINK-II Link Speed MECHATROLINK-II Monitor Selection (E)	0,1 0 to FFFFH	0	×	
un u	F6-24	MECHATROLINK-II Monitor Selection (F)	0 to FFFFH	0	×	
L L L	F6-25	MECHATROLINK-I WDT Error Selection	0 to 3	1	×	
	F6-26	MECHATROLINK-I bUS Errors	2 to 10	2	×	
	F6-30	PROFIBUS-DP Node Address	0 to 125	0	×	
	F6-31	PROFIBUS-DP Clear Mode Selection	0, 1	0	×	
	F6-32 F6-35	PROFIBUS-DP Data Format Selection CANopen Node ID Selection	0, 1 0 to 126	0	×	
	F6-36	CANopen Communication Speed	0 to 8	6	×	
	F6-50					
	to	DeviceNet Parameters	-	-	×	
	F6-63					
	F6-64					
	to Reserved F6-71		_	-	×	
	F0-71	Multi-Function Digital Input				
	H1-01	Terminal S1 Function Selection	1 to 9F	40 (F)*6	×	
		Multi-Function Digital Input	1 to 9F	44 (F)*6		
	H1-02	11-02 Terminal S2 Function Selection		41 (F)*6	×	
	H1-03	Multi-Function Digital Input	1 to 9F	24	×	
E o			Terminal S3 Function Selection			
Multi-Function Digital Inputs	H1-04	Multi-Function Digital Input Terminal S4 Function Selection	1 to 9F	14	×	
tal I		Multi-Function Digital Input		().		
Multi Digi	H1-05	Terminal S5 Function Selection	1 to 9F	3 (0)*6	×	
2 -	H1-06	Multi-Function Digital Input	1 to 9F	4 (3)*6	×	
		Terminal S6 Function Selection	1 10 01	1 (0)		
	H1-07	Multi-Function Digital Input	1 to 9F	6 (4)*6	×	
		Terminal S7 Function Selection Multi-Function Digital Input				
	H1-08	Terminal S8 Function Selection	1 to 9F	8	×	
	H2-01	Terminals M1-M2 Function	0 to 102	0	~	
uts on	H2-01	Selection (relays)	0 to 192	0	×	
Multi-Function Digital Outputs	H2-02	Terminal P1-PC Function	0 to 192	1	×	
al C		Selection (photocoupler)				
Mult Digit	H2-03	Terminal P2-PC Function Selection (photocoupler)	0 to 192	2	×	
	H2-06	Watt Hour Output Unit Selection	0 to 4	0	×	
	H3-01	Terminal A1 Signal Level Selection	0, 1	0	×	
	H3-02	Terminal A1 Function Selection	0 to 31	0	×	
outs	H3-03	Terminal A1 Gain Setting	-999.9 to 999.9		0	
Multi-Function Analog Inputs	H3-04	Terminal A1 Bias Setting	-999.9 to 999.9	0.0%	0	
aloc	H3-05 H3-06	Terminal A3 Signal Level Selection Terminal A3 Function Selection	0, 1 0 to 31	0	×	
l An	H3-06	Terminal A3 Function Selection	-999.9 to 999.9		Ô	
tior	H3-08	Terminal A3 Bias Setting	-999.9 to 999.9		0	
un-	H3-09	Terminal A2 Signal Level Selection	0 to 3	2	×	
liti-	H3-10	Terminal A2 Function Selection	0 to 31	0	×	
ž	H3-11	Terminal A2 Gain Setting	-999.9 to 999.9	-	0	
	H3-12	Terminal A2 Bias Setting	-999.9 to 999.9		0	
	H3-13	Analog Input Filter Time Constant	0.00 to 2.00	0.03 s	×	

					Changes
unction	No.	Name	Range	Default	Changes during Run
	H3-14	Analog Input Terminal Enable Selection	1 to 7	7	×
on Its	H3-16	Multi-Function Analog Input	$-500 \sim 500$	0	×
Multi-Function Analog Inputs	110 10	Terminal A1 Offset	300 300		~
Multi-Function Analog Inputs	H3-17	Multi-Function Analog Input	$-500 \sim 500$	0	×
nalo	110 17	Terminal A2 Offset	300 300	-	
≥∢	H3-18	Multi-Function Analog Input	$-500 \sim 500$	0	×
	110 10	Terminal A3 Offset			~
	H4-01	Multi-Function Analog Output	000 to 999	102	×
	-	Terminal FM Monitor Selection			
	H4-02	Multi-Function Analog Output	-999.9 to 999.9	100.0%	0
Its		Terminal FM Gain			
utpu	H4-03	Multi-Function Analog Output	-999.9 to 999.9	0.0%	0
Ō		Terminal FM Bias Multi-Function Analog Output			
alo	H4-04	Terminal AM Monitor Selection	000 to 999	103	×
An		Multi-Function Analog Output			
tion	H4-05	Terminal AM Gain	-999.9 to 999.9	50.0%	0
Multifunction Analog Outputs		Multi-Function Analog Output			
ultif	H4-06	Terminal AM Bias	-999.9 to 999.9	0.0%	0
Σ		Multi-Function Analog Output		_	
	H4-07	Terminal FM Signal Level Selection	0, 1	0	×
	114.00	Multi-Function Analog Output	0.4	_	,
	H4-08	Terminal AM Signal Level Selection	0, 1	0	×
	H5-01	Drive Node Address	0 to FFH	1F	×
ion	H5-02	Communication Speed Selection	0 to 8	3	×
icat	H5-03	Communication Parity Selection	0 to 2	0	×
unu	H5-04	Stopping Method After Communi-	0 to 3	0	×
omr		cation Error (CE)	0.000		
U O	H5-05	Communication Fault Detection	0, 1	0	×
eria		Selection	-	-	
SL SL	H5-06	Drive Transmit Wait Time	5 to 65	5 ms	×
ndbu	H5-07 H5-09	RTS Control Selection CE Detection Time	0, 1 0.0 to 10.0	1	×
/Wc	H0-09		0.0 10 10.0	2.0 s	
MEMOBUS/Modbus Serial Communication	H5-10	Unit Selection for MEMOBUS/ Modbus Register 0025H	0, 1	0	×
10E		Communications ENTER			
MEN	H5-11	Function Selection	0, 1	0	×
-	H5-12	Run Command Method Selection	0, 1	0	×
	H6-01	Pulse Train Input Terminal RP	0 to 3	0	~
nt	H0-01	Function Selection	0103	0	×
/Output	H6-02	Pulse Train Input Scaling	1000 to 32000	1440 Hz	0
ut/O	H6-03	Pulse Train Input Gain	0.0 to 1000.0	100.0%	0
Inp	H6-04	Pulse Train Input Bias	-100.0 to 100.0	0.0%	0
ain	H6-05	Pulse Train Input Filter Time	0.00 to 2.00	0.10 s	0
Ъ	H6-06	Pulse Train Monitor Selection	000 to 809	102	0
Pulse Train Input	H6-07	Pulse Train Monitor Scaling	0 to 32000	1440 Hz	0
۵.	H6-08	Pulse Train Input Minimum	0.1 to 1000.0	0.5 Hz	×
		Frequency Motor Overload Protection			
	L1-01	Selection	0 to 6	*3	×
	L1-02	Motor Overload Protection Time	0.1 to 5.0	1.0 min.	×
		Motor Overheat Alarm Operation			
	L1-03	Selection (PTC input)	0 to 3	3	×
	11.04	Motor Overheat Fault Operation	0.440.0	4	×
	L1-04	Selection (PTC input)	0 to 2	1	×
Б	L1-05	Motor Temperature Input Filter	0.00 to 10.00	0.20 s	×
ectio	21.00	Time (PTC input)	0.00 10 10.00	0.200	
rote	L1-13	Continuous Electrothermal	0, 1	1	×
or F		Operation Selection	,		
Motor Protection	L1-15	Motor 1 Thermistor Selection	0, 1	0	×
_	L1-16	(NTC) Motor 1 Overheat Temperature	50 to 200	120	×
		Motor 2 Thermistor Selection	00 10 200	120	
	L1-17	(NTC)	0, 1	0	×
	L1-18	Motor 2 Overheat Temperature	50 to 200	120	×
		Thermistor Phase Loss			,
	L1-19	Operation	0 to 3	3	×
	L1-20	Motor Overheat Operation	0 to 3	1	×

2

Note: Footnotes are listed on page 23.

Parameter List (continued)

Function	No.	Name	Range	Default	Online Changing
	L2-01	Momentary Power Loss Operation Selection	0 to 5	0	×
	L2-02	Momentary Power Loss Ride-Thru Time	0.0 to 25.5	*2	×
	L2-03	Interface Interface 01 Momentary Power Loss Ride-Thru Time 0.0 to 5 03 Momentary Power Loss Minimum Baseblock Time 0.1 to 5.0 04 Momentary Power Loss Voltage Recovery Ramp Time 0.0 to 5.0 05 Undervoltage Detection Level (Uv) 150 to 210*5 06 KEB Deceleration Time 0.00 to 6000.00*2 07 KEB Acceleration Time 0.00 to 6000.00*2 08 Frequency Gain at KEB Start 0 to 300 10 KEB Detection Time 0 to 2000 11 DC Bus Voltage Setpoint during KEB 150 to 400*5 29 KEB Method Selection 0 to 3 01 Stall Prevention Selection during Acceleration 0 to 100 02 Stall Prevention Selection during Run 0 to 150*2 11 Overvoltage Suppression Function Selection 0 to 150*2 121 Overvoltage Suppression Function Selection 0 to 150*2 131 Prevention Selection during Run 0 to 150*2 141 Overvoltage Suppression and Stall 150 to 400*5 15 Stall Prevention Selection </td <td>*2</td> <td>×</td>	*2	×	
-Thru	L2-01 Momentary Power Loss Operation Selection 0 to 5 L2-02 Momentary Power Loss Ride-Thru Time 0.0 to 25.5 L2-03 Baseblock Time 0.1 to 5.0 L2-04 Momentary Power Loss Minimum 0.1 to 5.0 L2-05 Undervoltage Detection Level (Uv) 150 to 210*5 L2-06 KEB Deceleration Time 0.00 to 6000.00* L2-07 KEB Acceleration Time 0.00 to 6000.00* L2-08 Frequency Gain at KEB Start 0 to 300 L2-10 KEB Detection Time 0 to 10 0 L2-11 DC Bus Voltage Setpoint during KEB 150 to 400*5 L3-01 Stall Prevention Selection during Acceleration 0 to 15** L3-02 Stall Prevention Selection during Maceleration 0 to 100 L3-03 Stall Prevention Selection during Maceleration 0 to 15** L3-05 Stall Prevention Selection during Maceleration 0 to 100 L3-04 Stall Prevention Selection during Maceleration 0.10 to 1000 L3-05 Stall Prevention Selection during Maceleration 0.10 to 1000 L3-20 DC Bus Voltage Adjustment Gain	*2	×		
ower Loss Ride	L2-05	Undervoltage Detection Level (Uv)	150 to 210*5	*5 dep. on E1-01	×
- Z	L2-06	KEB Deceleration Time	0.00 to 6000.00*2	0.00 s	×
nta				0.00 s	×
ue u				100%	×
- M				50 ms	X
				*5 dep. on E1-01	×
	L2-29	KEB Method Selection	0 to 3	0	×
	L3-01	Stall Prevention Selection during Acceleration	0 to 2	1	×
L2-01 Momentary Power Loss Operation Selection 0 to 5 0 L2-02 Momentary Power Loss Ride-Thru Time 0.0 to 25.5 #27 L2-03 Momentary Power Loss Minimum Baseblock Time 0.1 to 5.0 #27 L2-04 Momentary Power Loss Voltage Recovery Ramp Time 0.0 to 5.0 #27 L2-05 Undervoltage Detection Level (Uv) 150 to 210*5 #27 L2-06 KEB Deceleration Time 0.00 to 6000.00*2 0.00 L2-07 KEB Acceleration Time 0.00 to 6000.00*2 0.00 L2-08 Frequency Gain at KEB Start 0 to 3000 100 L2-01 KEB Method Selection 0 to 100 000 1150 L2-03 Stall Prevention Selection during Acceleration 0 to 150*2 324 L2-04 KEB Method Selection 0 to 150*2 324 L2-03 Stall Prevention Selection during Moceleration 0 to 150*2 324 L2-04 Stall Prevention Selection during Moceleration 0 to 150*2 324 L2-04 Stall Prevention Selection during Moceleration 0 to 150*2 327 <		*2	×		
	L3-03	Stall Prevention Limit during Acceleration	0 to 100	50%	×
		*			×
					X
		-			×
		-			
	L3-11	Overvoltage Suppression Function Selection	0, 1	0	×
ention	L3-17	Overvoltage Suppression and Stall	150 to 400*5	370 Vdc* ⁵ dep. on E1-01	×
all Prev	L3-20	DC Bus Voltage Adjustment Gain	0.00 to 5.00	*3	×
Sta	L3-21	Accel/Decel Rate Calculation Gain	0.10 to 10.00	*3	×
		Deceleration Time at Stall			
		-		0.0 s	×
	L3-23		0, 1	0	×
	L3-24			*2 dep. on E2-11 dep. on E5-01	×
	L3-25	Load Inertia Ratio	0.0 to 1000.0	1.0	×
				0μF	×
				50 ms	×
\vdash					
					×
	L2-01 Momentary Power Loss Operation Selection 0 to 5 L2-02 Momentary Power Loss Ride-Thru Time 0.0 to 25 L2-03 Momentary Power Loss Minimum Baseblock Time 0.0 to 5 L2-04 Momentary Power Loss Voltage Recovery Ramp Time 0.0 to 5 L2-04 Momentary Power Loss Voltage Recovery Ramp Time 0.0 to 5 L2-04 Momentary Power Loss Voltage Recovery Ramp Time 0.0 to 6000 L2-05 Undervoltage Detection Level (Uv) 150 to 21 L2-06 KEB Deceleration Time 0.00 to 6000 L2-07 KEB Acceleration Time 0.00 to 6000 L2-08 Frequency Gain at KEB Start 0 to 30 L2-01 KEB Method Selection 0 to 30 L2-03 Stall Prevention Level during Acceleration 0 to 200 L3-04 Stall Prevention Level during Run 0 to 150 L3-05 Stall Prevention Selection during Receleration 0 to 150 L3-04 Stall Prevention Selection during Run 0 to 150 L3-03 Stall Prevention Selection during Run 0 to 150 L3-04 Stall Prevention Selection during Run </td <td></td> <td></td> <td>×</td>			×	
ži				*3	×
tec	L4-04		0.0 to 20.0	*3	×
ed De	L4-05		0, 1	0	×
Spt	L4-06		0.0 to 100.0	80.0%	×
	L4-07	Speed Agreement Detection Selection	0, 1	0	×
				0	×
set					×
ult Re				10.0 s	×
Б	15-05	Fault Reset Operation Selection	0.1	0	×
			υ, Ι	U	^

					Online
Function	No.	Name	Range	Default	Changing
	L6-01	Torque Detection Selection 1	0 to 8	0	×
	L6-02	Torque Detection Level 1	0 to 300	150%	×
ы	L6-03	Torque Detection Time 1	0.0 to 10.0	0.1 s	×
ectio	L6-04	Torque Detection Selection 2	0 to 8	0	×
Dete	L6-05	Torque Detection Level 2	0 to 300	150%	×
] er	L6-06	Torque Detection Time 2	0.0 to 10.0	0.1 s	×
ordi	L6-08	Mechanical Weakening Detection Operation	0 to 8	0	×
Torc	L6-09	Mechanical Weakening Detection Speed Level	- 110.0 to 110.0	110.0%	×
	L6-10	Mechanical Weakening Detection Time	0.0 to 10.0	0.1 s	×
	-	Mechanical Weakening Detection Start Time	0 to 65535	0	×
Torque Limit	-	Forward Torque Limit		200%	×
				200%	×
in.				200%	×
l er				200%	×
ordu	L7-06		5 to 10000	200 ms	×
P	L7-07	Torque Limit Control Method Selection during Accel/Decel	0, 1	0	×
	L7-16	Torque Limit Delay at Start	0, 1	1	×
	L8-01		0, 1	0	×
	18-02		50 to 130	*2	×
				3	×
				0	×
				0	×
				1	×
				0	×
_			,	60 s	×
tion		· ,		40°C	×
otec		·		1	×
Pro		· · · · · · · · · · · · · · · · · · ·		0	×
ive		Frequency Reduction Rate during oH Pre-Alarm 0.1 to 0.9		0.8	×
ā	L8-27			300.0%	×
	L8-29	Current Unbalance Detection (LF2) 0, 1		1	×
	L8-32		0 to 4	1	×
	L8-35	Installation Method Selection	0 to 3	*1 *2	×
	L8-38	Carrier Frequency Reduction Selection	0 to 2	*2	×
	L8-40	Carrier Frequency Reduction Off DelayTime	0.00 to 2.00	*3	×
	L8-41	High Current Alarm Selection	0, 1	0	×
	L8-55	Internal Braking Transistor Protection	0,1	1	×
	L8-78*8	Power Unit Output Phase Loss Protection	0, 1	1	×
n	n1-01	Hunting Prevention Selection	0, 1	1	×
ing	n1-02	Hunting Prevention Gain Setting	0.00 to 2.50	1.00	×
Hunti Preve	n1-03	Hunting Prevention Time Constant	0 to 500	*4	×
	n1-05		0.00 to 2.50	0.00	×
etection	n2-01	Speed Feedback Detection Control (AFR) Gain	Selection0 to 3duction Selection0 to 2tion Off DelayTime0.00 to 2.00Selection0, 1sistor Protection0, 1e Loss Protection0, 1Gain Setting0.00 to 2.50Time Constant0 to 500nwhile in Reverse0.00 to 2.50etection0.00 to 10.00etection0 to 2000etection0 to 2000etection0 to 2000constant 10 to 2000		×
dback D ASR) Tu	n2-02	Speed Feedback Detection	0 to 2000	50 ms	×
Speed Feedback Detection Control (ASR) Tuning	L6-03 Torque Detection Time 1 0.0 to 10.0 L6-04 Torque Detection Selection 2 0 to 8 L6-05 Torque Detection Level 2 0 to 300 L6-06 Torque Detection Time 2 0.0 to 10.0 L6-07 Mechanical Weakening Detection Operation 0 to 8 L6-08 Mechanical Weakening Detection Speed Level -110.0 to 110.0 L6-10 Mechanical Weakening Detection Start Time 0.0 to 300 L7-01 Forward Torque Limit 0 to 300 L7-02 Reverse Torque Limit 0 to 300 L7-03 Forward Regenerative Torque Limit 0 to 300 L7-04 Reverse Regenerative Torque Limit 0 to 300 L7-05 Torque Limit Integral Time Constant 5 to 10000 L7-06 Torque Limit Delay at Start 0, 1 L7-07 Torque Engle Lawing Resistor 0, 1 Protection Selection (ERF type) 0, 1 1 L8-01 Internal Dynamic Braking Resistor 0, 1 L8-03 Overheat Alarm Level 50 to 1300 L8-04 Output Ground Fault Detection Selection <td>750 ms</td> <td>×</td>	750 ms	×		
Sp					
_	n3-01	° ' °	1 to 20	5%	×
and	n3-01 High-Slip Braking Deceleration Frequency Width 1 to 20		*2	×	
n3-01 Frequency V				1.0 s	×
raki on I				40 s	×
p B itati				1.10	×
rexci				0	×
High Over	L8-07 Output Phase Loss Protection 0 to 2 L8-09 Output Ground Fault Detection Selection 0, 1 1 L8-09 Output Ground Fault Detection Selection 0, 1 1 L8-10 Heatsink Cooling Fan Operation Selection 0, 1 1 L8-11 Heatsink Cooling Fan Operation Selection 0, 1 1 L8-12 Ambient Temperature Setting -10 to 50 1 L8-15 ol Characteristics Selection at Low Speeds 0, 1 1 L8-17 Overcurrent Detection Gain 0.0 to 300.0 3 L8-27 Overcurrent Detection Gain 0.0 to 300.0 3 L8-29 Current Unbalance Detection (LF2) 0, 1 1 L8-35 Installation Method Selection 0 to 4 1 L8-36 Carrier Frequency Reduction Selection 0.00 to 2.00 1 L8-40 Carrier Frequency Reduction Selection 0,1 1 L8-55 Internal Braking Transistor Protection 0,1 1 L8-78* Power Unit Output Phase Loss Protection 0,1 1 <td></td> <td></td>				
•				100%	×
70				0	×
warc	n5-01	Feed Forward Control Selection		0	×
Feed Forward Control	n5-02	Motor Acceleration Time		*2 dep. on E5-01	×
Feec	n5-03	Feed Forward Control Gain		1.00	×

Note: Footnotes are listed on page 23.

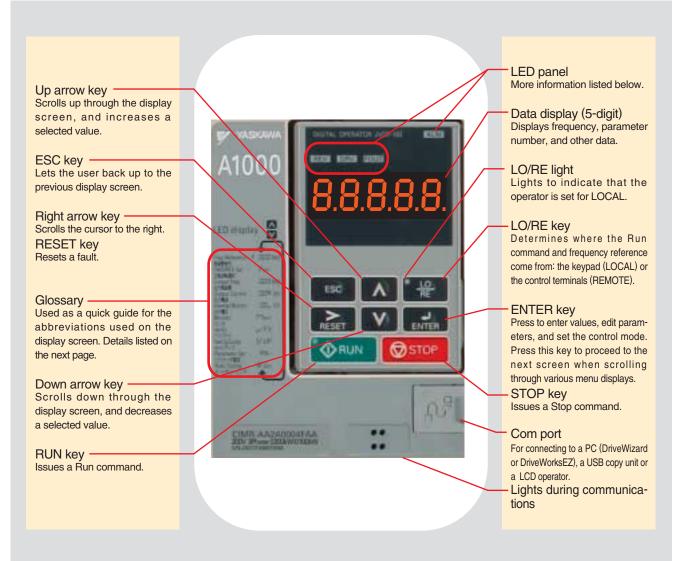
Function	No.	Name	Range	Default	Online Changing
Tuning	n6-01	Online Tuning Selection	0 to 2	0	×
Online .	n6-05	Online Tuning Gain	0.10 to 5.00	1.00	×
	n8-01	Initial Rotor Position Estimation Current	0 to 100	50%	×
	n8-02	Pole Attraction Current	0 to 150	80%	×
PM Motor Control Tuning Online Tuning Online Tuning	n8-35	Initial Rotor Position Detection Selection	0 to 2	1	×
[n8-45	Speed Feedback Detection Control Gain	0.00 to 10.00	0.80	×
5	n8-47	Pull-In Current Compensation Time Constant	0.0 to 100.0	5.0 s	×
u.	n8-48	Pull-In Current	20 to 200	30%	×
itrol Tu	n8-49	d-Axis Current for High Efficiency Control	-200.0 to 0.0	dep. on E5-01	×
5	n8-51	Acceleration/Deceleration Pull-In Current	0 to 200	50%	×
to	n8-54	Voltage Error Compensation Time Constant	0.00 to 10.00	1.00 s	×
Ň	n8-55	Load Inertia	0 to 3	0	×
Σ	n8-57	High Frequency Injection	0, 1	0	×
	n8-62	Output Voltage Limit	0.0 to 230.0*5	200.0 Vac*5	×
	n8-65	Speed Feedback Detection Control Gain during ov Suppression	0.00 to 10.00	1.50	×
Build B	0 to 150	100%	×		
Build B	106	0			
Digital Operator Display Selection	o1-02	User Monitor Selection After Power Up	1 to 5	1	0
	o1-03	Digital Operator Display Selection	0 to 3	*3	×
ato	o1-04	V/f Pattern Display Unit	0, 1	*3	×
l Oper Sele	o1-10	1 to 60000		*2	×
Digita	o1-11		0 to 3	*2	×
S	o2-01	LO/RE Key Function Selection	0, 1	1	×
stion	o2-02	STOP Key Function Selection	0, 1	1	×
un l	o2-03	User Parameter Default Value	0 to 2	0	×
ypad F	o2-04	Drive Model Selection	-	dep. on drive capacity	×
	o2-05		0, 1	0	×
Dera	o2-06	Operation Selection when Digital Operator is Disconnected	0, 1	0	×
jital Op	o2-07		0, 1	0	×
Digital Operator Keypad Fur	o2-09	Reserved	-	-	×
tion PV	o3-01	Copy Function Selection	0 to 3	0	×
lo ni	o3-02		0, 1	0	×
	o4-01	Cumulative Operation Time Setting		0 H	×
ting	o4-02	Cumulative Operation Time Selection	0, 1	0	×
or Sett	o4-03	Cooling Fan Operation Time		0 H	×
onit	04-05		0 to 150	0%	×
≥	o4-07	DC Bus Pre-charge Relay Maintenance Setting		0%	×
ance	o4-09	IGBT Maintenance Setting	0 to 150	0%	×
iené	o4-11	_		0	×
aint	04-12			0	×
ž				0	×
DWEZ Parameters	q1-01 to		_	_	×
*1: Pa	rameter	is not reset to the default value whe	n the drive is ini	tialized (A1-03)

*1: Parameter is not reset to the default value when the drive is initialized (A1-03). *2: Value depends on other related parameter settings. Refer to A1000 Technical Manual for details.

*3: Default setting depends on the control mode (A1-02). Refer to A1000 Tech-nical Manual for details.

*4: Default setting depends on drive capacity (o2-04). Refer to A1000 Techni-cal Manual for details.

*5: Value shown here is for 200 V class drives. Double the value when using a 400 V class drive.


400 V class drive.
46: Value in parenthesis is the default setting for a 3-wire sequence.
*7: Sets the value for a SST4 series 1750 r/min motor according to the capacity entered to T2-02.
*8: Parameter L8-78 is available only for drives 450 kW and above.

					0.1
Function	No.	Name	Range	Default	Online Changing
DWEZ Connection Parameters	r1-01 to r1-40	DWEZ Connection Parameter 1 to 20 (upper/lower)	0 to FFFFH	0	×
	T1-00	Motor 1 / Motor 2 Selection	1, 2	1	Х
	T1-01	Auto-Tuning Mode Selection	0 to 4,8,9*3	0	×
	T1-02	Motor Rated Power	0.00 to 650.00	*4	×
_uning	T1-03	Motor Rated Voltage	0.0 to 255.0*5	200.0 Vac*5	×
Induction Motor Auto-Tuning	T1-04	Motor Rated Current	10% to 200% of the drive rated current	*4	×
tion	T1-05	Motor Base Frequency	0.0 to 400.0	60.0 Hz	×
duct	T1-06	Number of Motor Poles	2 to 48	4	×
lnc	T1-07	Motor Base Speed	0 to 24000	1750 r/min	×
	T1-08	PG Number of Pulses Per Revolution	0 to 60000	600 ppr	×
	T1-09	Motor No-Load Current (Stationary Auto-Tuning)	0 to T1-04	_	-
	T1-10	Motor Rated Slip (Stationary Auto-Tuning)	0.00 to 20.00	—	-
	T1-11	Motor Iron Loss	0 to 65535	14 W*2	×
-	T2-01	PM Motor Auto-Tuning Mode Selection	0 to 3,8,9*3	0	×
	T2-02	PM Motor Code Selection	0000 to FFFF	*2	×
	T2-03	PM Motor Type	0,1	1	×
	T2-04	PM Motor Rated Power 0.00 to 650.00		*4	×
	T2-05	PM Motor Rated Voltage	0.0 to 255.0*5	200.0 Vac*5	×
ing	T2-06	PM Motor Rated Current	10% to 200% of the drive rated current	*4	×
Lun	T2-07	PM Motor Base Frequency	0.0 to 400.0	87.5 Hz	×
to-1	T2-08	Number of PM Motor Poles	2 to 48	6	×
Αu	T2-09	PM Motor Base Speed	0 to 24000	1750 r/min	×
PM Motor Auto-Tuning	T2-10	PM Motor Stator Resistance	0.000 to 65.000	*7	×
РΔ	T2-11	PM Motor d-Axis Inductance	0.00 to 600.00	*7	×
	T2-12	PM Motor q-Axis Inductance	0.00 to 600.00	*7	×
	T2-13	Induced Voltage Constant Unit Selection	0,1	1	×
	T2-14	PM Motor Induced Voltage Constant	0.1 to 2000.0	*7	×
	T2-15	Pull-In Current Level for PM Motor Tuning	0 to 120	30%	-
	T2-16	PG Number of Pulses Per Revolution for PM Motor Tuning	0 to 15000	1024 ppr	_
	T2-17	Encoder Z Pulse Offset	- 180.0 to 180.0	0.0 deg	×
tia	T3-01	Test Signal Frequency	0.1 to 20.0	3.0 Hz	×
ner g	T3-02	Test Signal Amplitude	0.1 to 10.0	0.5 rad	×
ASR and Inertia Tuning	T3-03	Motor Inertia	0.0001 to 600.00	*2 dep. on E5-01	×
ASF	T3-04	System Response Frequency	0.1 to 50.0	10.0 Hz	×
1		-,	0000.0		

 $+ \times \times$

Outstanding operability and quick setup

Operator Names and Functions

LED Display Guide

LED	ON	Flashing	OFF
ALM	A fault has occurred.	 Alarm situation detected. Operator error (OPE) 	Normal operation
REV	Motor is rotating in reverse.		Motor is rotating forward.
DRV	In the "Drive Mode"		Programming Mode
FOUT	Output frequency		
	Run command assigned to the operator (LOCAL)		Control assigned to remote location
	During run	During deceleration Run command is present but the frequency reference is zero.	Drive is stopped.

How the RUN light works:

Drive output f	requency				
Run comman	d				
Frequency re	ference				L
RUN light	OFF	ON	Flashing	OFF	Flashing

Operation Example

Steps	Key	Result/Display		How to Monitor the Freque Steps	Kev	Result/Dis
Turn the power on.	Roy	F 0.00		Use the arrow keys to select the digits to set.	ENTER	FÖ0.0
Set the drive for LOCAL. The frequency reference is displayed.	RE	LO Should light		-	RESET	F 0 0.0 F 0 6.0 "End" appears v drive saves the r
Displays the direction (forward/reverse).	\land	For		Press enter to save the new value.	ENTER	FO5.0
				Monitor Mode: Displays	operation status and	information or
Displays the output frequency.	\land	0.0 0		Steps	Key	Result/Dis
Displays the output current.	٨	0.00R		Selecting a Monitor for Display. Displays U1-01, the		U I - Ö 6.0
Displays the output voltage.	\land	0.0 u		frequency reference monitor.	ESC	U I-0
Displays the beginning of the Monitor Menu.	~	flashing		Re-select the monitor display menu.		U I - Ū : U I - Ž
Displays the top of the Verify Menu.	\land	flashing ur F y		Back up to the top of the Monitor Menu.	Esc Press once.	<u>רח</u>
Displays the top of the Setup Mode.	\land	flashing SCUP	1		arameters that hav original default set or from Auto-Tuning	ttings, either
Displays the top of the parameter settings menu.	\wedge	"PAr"		Steps	Кеу	Result/Dis
Displays the top of the Auto-Tuning Mode.	\land	Ĩ A.C.U.∩Ĩ		Lists parameters that have been changed in order. Pressing Enter displays	ENTER	0-1-0 0003
Returns back to the frequency reference display.	~			the parameter value. Parameters that have been changed from their default values are listed in order.	ESC	"C I-0 "C I-0
e will flash when it is possible to chan	ge the settin	g.				["] C6-0
				Returns to the top of	ESC Press	urF

Setup Mode

The list of Applications Presets can be accessed in the Setup Mode. Each Application Preset automatically programs drive parameters to their optimal settings specific to the application selected. All parameters affected by the Application Preset are then listed as Preferred Parameters for quick access.

Selecting a Conveyor (A1-06=1) Result/Display Steps **Application Selection** RPPL 00 RESET ΠÌ Select, "Conveyor". \wedge П All parameters relating to the preset values for a Conveyor application are then listed as Preferred Parameters. ENTER Scroll to the Preferred Parameter using the up arrow key and see which parameters have been selected.

Conveyor Application Presets

No.	Parameter Name	Optimum Setting
A1-02	Control Method Selection	0: V/f Control
C1-01	Acceleration Time 1	3.0 (s)
C1-02	Deceleration Time 1	3.0 (s)
C6-01	Duty Mode Selection	0: Heavy Duty (HD)
L3-04	Stall Prevention Selection during Deceleration	1: Enabled

Preferred Parameters

No.	Parameter Name	No.	Parameter Name
A1-02	Control Method Selection	C1-02	Deceleration Time 1
b1-01	Frequency Reference Selection 1	E2-01	Motor Rated Current
b1-02	Run Command Selection 1	L3-04	Stall Prevention Selection during Deceleration
C1-01	Acceleration Time 1	-	-

Standard Specifications

Parameter C6-01 sets the drive for Normal Duty or Heavy Duty performance (default).

20	0 V Class																1	ND : No	ormal D	uty, HD	: Heav	/y Duty
Mod	lel CIMR-AA2A		0004	0006	0008*7	0010	0012	0018*7	0021	0030	0040	0056	0069	0081	0110	0138	0169	0211	0250	0312	0360	0415
Мах	. Applicable	ND	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	110
Mote	or Capacity*1 kW	HD	0.4	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110
Input	Rated Input	ND	3.9	7.3	8.8	10.8	13.9	18.5	24	37	52	68	80	92	111	136	164	200	271	324	394	471
<u>اط</u>	Current*2 A	HD	2.9	5.8	7	7.5	11	15.6	18.9	28	37	52	68	80	82	111	136	164	200	271	324	394
	Rated Output	ND*4	1.3	2.3	3	3.7	4.6	6.7	8	11.4	15.2	21	26	31	42	53	64	80	95	119	137	158
	Capacity*3 kVA	HD	1.2*5															82*6	108*6	132*6	158*4	
	Rated Output	ND*4	3.5	6	8	9.6	12	17.5	21	30	40	56	69	81	110	138	169	211	250	312	360	415
nt	Current A	HD	3.2*5	5*5	6.9*5	8*5	11 *5	1 4*5	17.5*5	25*5	33*5	47*5	60*5	75*5	85*5	115*5	145*6	180*6	215*6	283*6	346*6	415*4
Output	Overload To	ler-		ND Rating*8: 120% of rated output current for 60 s, HD Rating*8: 150% of rated out															curren	nt for 6	0 s	
0	ance			(Derating may be required for repetitive loads)																		
	Carrier Frequ	lency		1 to 15 kHz*8 1 to 10 kHz*8																		
	Max. Output V	oltage						Tł	nree-p	hase 2	200 to	240 \	' (relat	tive to	input	voltag	e)					
	Max. Output Free	quency										400	Hz*8									
	Rated Voltage/Rated F	requency			Three	e-phas	se AC	power	suppl	y: 200) to 24	0 Vac	50/60	Hz, [DC po	wer su	ipply:	270 to	340 \	/dc*9		
er	Allowable Voltage Flu	uctuation									_	15% t	o +109	%								
ower	Allowable Frequency F	luctuation		-								±5	%									
∟	Power Supply	ND	2.2	3.1	4.1	5.8	7.8	9.5	14	18	27	36	44	52	51	62	75	91	124	148	180	215
	kVA	HD	1.3	2.2	3.1	4.1	5.8	7.8	9.5	14	18	27	36	44	37	51	62	75	91	124	148	180
Harm	onic Suppression DC I	Reactor						Opt	tion									Bui	lt-in			
Brak	king Function Brakin	ng Resistor							Bui	lt-in									Opt	tion		

*1: The motor capacity (kW) refers to a Yaskawa 4-pole, 60 Hz, 200 V motor. The rated output current of the drive output amps should be equal to or greater than the motor rated current.

*2: Value displayed is for when operating at the rated output current. This value may fluctuate based on the power supply side impedance, as well as the input cur-rent, power supply transformer, input side reactor, and wiring conditions.

ND : Normal Duty, HD : Heavy Duty

*3: Rated output capacity is calculated with a rated output voltage of 220 V.

*4: This value assumes a carrier frequency of 2 kHz. Increasing the carrier frequency requires a reduction in current.

*5: This value assumes a carrier frequency of 8 kHz. Increasing the carrier frequency requires a reduction in current.

*6: This value assumes a carrier frequency of 5 kHz. Increasing the carrier frequency requires a reduction in current. *7: These models are available in Japan only.

*8: Carrier frequency can be set by the user. *9: Use of a DC power supply is not UL and CE approved.

400 V Class

	Model CIMR-AA4A1 10 10002 0004 0005 0007 0009 0011 0018 0023 0031 0038 0044 0058 0072 0088 0103 0139 0165 0208 0250 0296 0362 0414 0515 0675 0930 1														,													
Мос	del CIMR-AA4A		0002	0004	0005	0007	0009	0011	0018	0023	0031	0038	0044	0058	0072	0088	0103	0139	0165	0208	0250	0296	0362	0414	0515	0675	0930	1200
Мах	. Applicable	ND	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220	250	355	500	630
Mot	or Capacity*1 kW	HD	0.4	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220	315	450	560
put	Rated Input	ND	2.1	4.3	5.9	8.1	9.4	14	20	24	38	44	52	58	71	86	105	142	170	207	248	300	346	410	465	657	922	1158
	Current*2 A	HD	1.8	3.2	4.4	6	8.2	10.4	15	20	29	39	44	43	58	71	86	105	142	170	207	248	300	346	410	584	830	1031
	Rated Output	ND*4	1.6	3.1	4.1	5.3	6.7	8.5	13.3	17.5	24	29	34	44	55	67	78	106	126	159	191	226	276	316	392	514	709	915
	Capacity*3 kVA	HD	1.4*5	2.6*5	3.7*5	4.2*5	5.5*5	7*5	11.3*5	13.7*5	18.3*5	24*5	30*5	34*5	46*5	57*5	69* ⁵	85*5	114*6	137*6	165*6	198*6	232*6	282*6	343*4	461*4	617*4	831*4
	Rated Output	ND*4	2.1														362	414	515	675	930	1200						
t	Current A															450*4	605*4	810*4	1090*4									
utpi																% of	rated	d out	put c	urre	nt for	60 s	;					
0	ance (Derating may be required for repe															petiti	ve lo	ads)										
Carrier Frequency 1 to 15 kHz*7																		11	io 10	kHz	*7			1 to	5 kH	Iz *7		
	Max. Output V	oltage							Th	ree-p	bhase	e 380) to 4	80 V	/ (rela	ative	to in	put v	/olta	ge)							Input volta	age×0.95
	Max. Output Free	quency													400	Hz*7												
	Rated Voltage/Rated F	requency			Т	hree	-pha	ise A	С ро	wer	supp	ly: 38	30 to	480	Vac	50/6	0 Hz	, D0	C pov	ver s	uppl	y: 51	0 to	680	Vdc*	:8		
er	Allowable Voltage Fl	uctuation												-1	5% to	o +10)%											
Mo	Allowable Frequency F	luctuation													±5	%												
	Power Supply	ND	2.3	4.3	6.1	8.1	10	14.4	19.4	28.4	37.5	46.6	54.9	53	64.9	78.6	96	130	156	189	227	274	316	375	416	601	843	1059
	kVA	HD	1.4	2.3	4.3	6.1	8.1	10	14.6	19.2	28.4	37.5	46.6	39.3	53	64.9	78.6	96	130	156	189	227	274	316	375	508	759	943
Harm	onic Suppression DC	Reactor					C	Optio	n											E	Built-i	n						
Bral	king Function Brakir	ng Resistor						В	Built-i	n											C	Optio	n					

*1: The motor capacity (kW) refers to a Yaskawa 4-pole, 60 Hz, 400 V motor. The rated output current of the drive output amps should be equal to or greater than the motor rated current.

*2: Value displayed is for when operating at the rated output current. This value may fluctuate based on the power supply side impedance, as well as the input cur-rent, power supply transformer, input side reactor, and wiring conditions.

*3: Rated output capacity is calculated with a rated output voltage of 440 V.

*4: This value assumes a carrier frequency of 2 kHz. Increasing the carrier frequency requires a reduction in current.

*5: This value assumes a carrier frequency of 8 kHz. Increasing the carrier frequency requires a reduction in current.

*6: This value assumes a carrier frequency of 5 kHz. Increasing the carrier frequency requires a reduction in current.

*7: Carrier frequency can be set by the user.

*8: Use of a DC power supply is not UL and CE approved.

Common Specifications

	Item	Specifications
	Control Method	V/f Control, V/f Control with PG, Open Loop Vector Control, Closed Loop Vector Control, Open Loop Vector Control for PM, Advanced Open Loop Vector Control for PM, Closed Loop Vector Control for PM
	Frequency Control Range	0.01 to 400 Hz
	Frequency Accuracy (Temperature Fluctuation)	Digital reference: within $\pm 0.01\%$ of the max. output frequency (-10 to + 40°C) Analog reference: within $\pm 0.1\%$ of the max. output frequency (25 $\pm 10^{\circ}$ C)
	Frequency Setting Resolution	Digital reference: 0.01 Hz Analog reference: 0.03 Hz / 60 Hz (11 bit)
	Output Frequency Resolution	0.001 Hz
	Frequency Setting Resolution	-10 to +10 V, 0 to +10 V, 4 to 20 mA, pulse train
	Starting Torque	150%/3 Hz (V/f Control and V/f Control with PG), 200%/0.3 Hz*1 (Open Loop Vector Control), 200%/0 r/min*1 (Closed Loop Vector Control, Closed Loop Vector Control for PM, and Advanced Open Loop Vector Control for PM), 100%/5% speed (Open Loop Vector Control for PM)
Control Characteristics	Speed Control Range	1:1500 (Closed Loop Vector Control and Closed Loop Vector Control for PM) 1:200 (Open Loop Vector Control) 1:40 (V/f Control and V/f Control with PG) 1:20 (Open Loop Vector Control for PM) 1:100 (Advanced Open Loop Vector Control for PM)
ara	Speed Control Accuracy	±0.2% in Open Loop Vector Control (25 ±10°C) *2, ±0.02% in Closed Loop Vector Control (25 ±10°C)
ntrol Ch	Speed Response	10 Hz in Open Loop Vector Control ($25 \pm 10^{\circ}$ C), 50 Hz in Closed Loop Vector Control ($25 \pm 10^{\circ}$ C) (excludes temperature fluctuation when performing Rotational Auto-Tuning)
ပိ	Torque Limit	All vector control modes allow separate settings in four quadrants
	Accel/Decel Time	0.00 to 6000.0 s (4 selectable combinations of independent acceleration and deceleration settings)
	Braking Torque*3	Approximately 20% (up to approx. 125% with a braking option) 200/400 V models up to 30 kW have the following braking transistor built-in (CIMR-AA2A0138/AA4A0072) ① Short-time decel torque ^{*4} : over 100% for 0.4/ 0.75 kW motors, over 50% for 1.5 kW motors, and over 20% for 2.2 kW and above motors (Overexcitation Deceleration, High Slip Braking: approx. 40%) ② Continuous regen. torque: approx. 20% (approx. 125% with dynamic braking resistor option* ⁵ : 10% ED,10 s
	V/f Characteristics	User-selected programs and V/f preset patterns possible
	Main Control Functions	Torque Control, Droop Control, Speed/Torque Control switch, Feed Forward Control, Zero Servo Control, Momen- tary Power Loss Ride-Thru, Speed Search, Overtorque detection, torque limit, 17 Step Speed (max.), accel/decel time switch, S-curve accel/decel, 3-wire sequence, Auto-Tuning (rotational, stationary), Online Tuning, Dwell, cool- ing fan on/off switch, slip compensation, torque compensation, Frequency Jump, Upper/lower limits for frequency reference, DC Injection Braking at start and stop, Overexcitation Deceleration, High Slip Braking, PID control (with Sleep function), Energy Saving Control, MEMOBUS comm. (RS-485/422, max. 115.2 kbps), Fault Restart, Appli- cation Presets, DriveWorksEZ (customized functions), Removable Terminal Block with Parameter Backup
	Motor Protection	Motor overheat protection based on output current
	Momentary Overcurrent Protection	Stops over 200% rated output current (Heavy Duty)
	Overload Protection	Drive stops after 60 s at 150% of rated output current (when set for Heavy Duty performance)*6
ion	Overvoltage Protection	200 V class: Stops when DC bus exceeds approx. 410 V, 400 V class: Stops when DC bus exceeds approx. 820 V
Function	Undervoltage Protection	200 V class: Stops when DC bus exceeds approx. 190 V, 400 V class: Stops when DC bus exceeds approx. 380 V
_	Momentary Power Loss Ride-Thru	Stops immediately after 15 ms or longer power loss (default). Continuous operation during power up to 2 s (standard).*7
Protection	Heatsink Overheat Protection	Thermistor
otec	Braking Resistance Overheat Protection	Overheat sensor for braking resistor (optional ERF-type, 3% ED)
P	Stall Prevention	Stall prevention during acceleration/deceleration and constant speed operation
	Ground Fault Protection	Protection by electronic circuit *8
	Charge LED	Charge LED remains lit until DC bus has fallen below approx. 50 V
	Area of Use	Indoors
	Ambient Temperature	-10 to +50°C (open-chassis), -10 to +40°C (NEMA Type 1)
lent	Humidity	95% RH or less (no condensation)
muc	Storage Temperature	-20 to +60°C (short-term temperature during transportation)
Environment	Altitude	Up to 1000 meters (derating is required for operation at altitudes 1000 to 3000 m)
Ш	Shock	10 Hz to 20 Hz, 9.8 m/s² max. (5.9 m/s² for models larger than 400 V 450 kW) 20 Hz to 55 Hz, 5.9 m/s² (200 V: 45 kW or more, 400 V: 55 kW or more) or 2.0 m/s² max. (200 V: 55 kW or less, 400 V: 75 kW or less)
Sta	indards Compliance	UL 508C, EN61800-3, EN61800-5-1, EN954-1 Cat. 3, ISO 13849-1 (Cat. 3, PLd), IEC/EN61508 SIL2
Pro	otection Design	IP00 open-chassis, IP20 NEMA Type 1 enclosure *9
14.4.1	Bequires a drive with recommend	Ad capacity \$7' Varies in accordance with drive capacity and load. Drives with a capacity of

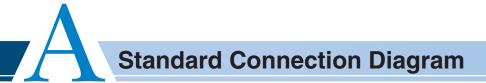
*1: Requires a drive with recommended capacity.

*2: Speed control accuracy may vary slightly depending on installation conditions or motor used. Contact Yaskawa for details.

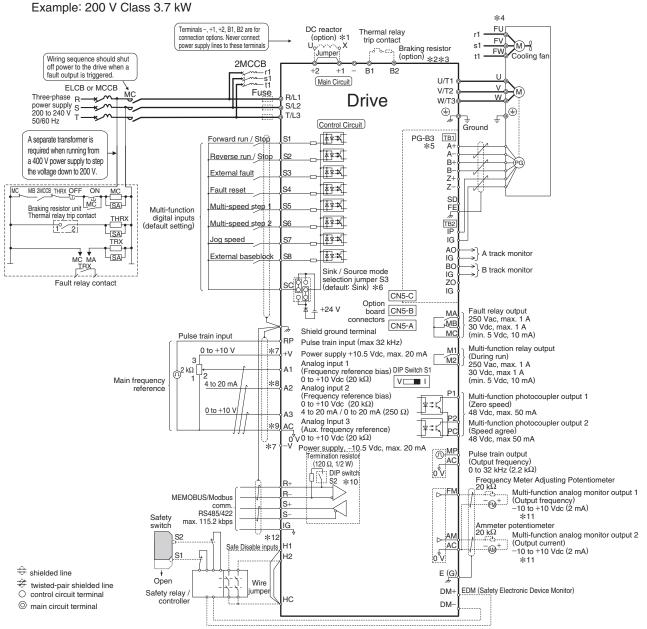
*3: Varies by motor characteristics.

*4: Momentary average deceleration torque refers to the deceleration torque from 60 Hz down to 0 Hz. This may vary depending on the motor.

*5: If L3-04 is enabled when using a braking resistor or braking resistor unit, the motor may not stop within the specified deceleration time.

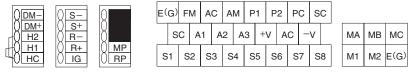

*6: Overload protection may be triggered when operating with 150% of the rated output current if the output frequency is less than 6 Hz.
 *9: Removing the cover of changes the drive's NEMA Type 1 rating to IP20 (models 2A0004 to 2A0081 and 4A0002 to 4A0044).

*7: Varies in accordance with drive capacity and load. Drives with a capacity of smaller than 11 kW in the 200 V (model: CIMR- AA2A0056) or 400 V (model: CIMR- AA4A0031) require a separate Momentary Power Loss Recovery Unit to continue operating during a momentary power loss of 2 s or longer.


*8: Protection may not be provided under the following conditions as the motor windings are grounded internally during run:

· Low resistance to ground from the motor cable or terminal block.

 \cdot Drive already has a short-circuit when the power is turned on.



Standard Connection Diagram

- *1: Remove the jumper when installing a DC reactor. Certain models come with a built-in DC reactor: CIMR-2A0110 and above, CIMR-4A0058 and above.
- *2: Make sure Stall Prevention is disabled (L3-04 = 0) whenever using a braking resistor. If left enabled, the drive may not stop within the specified deceleration time. *3: Enable the drive's braking resistor overload protection by setting L8-01 = 1 when using ERF type braking resistors. Wire the thermal overload relay between the drive and the braking resistor and connect this signal to a drive digital input. Use this input to trigger a fault in the drive in case of a braking resistor overload.
- *4: Self-cooling motors do not require wiring that would be necessary with motors using a cooling fan.
- *5: For control modes that do not use a motor speed feedback signal, PG option card wiring is not necessary.
- *6: This figure shows an example of a sequence input to S1 through S8 using a non-powered relay or an NPN transistor (0 V common/sink mode: default). When sequence connections by PNP transistor (+24 V common/source mode) or preparing a external +24 V power supply, refer to A1000 Technical Manual for details. The maximum output current capacity for the +V and -V terminals on the control circuit is 20 mA. Never short terminals +V, -V, and AC, as this can cause erroneous operation or damage the drive.
- *8: Set DIP switch S1 to select between a voltage or current input signal to terminal A2. The default setting is for voltage input.
- *9: Never connect to the AC terminal ground or chassis. This can result in erroneous operation or cause a fault.
- *10: Enable the termination resistor in the last drive in a MEMOBUS/Modbus network by setting DIP switch S2 to the ON position.
- *11: Monitor outputs work with devices such as analog frequency meters, ammeters, voltmeters, and wattmeters. Do not use these outputs in a feedback loop. *12: Disconnect the wire jumper between HC H1 and HC H2 when utilizing the Safe Disable input.
- - The sink/source setting for the Safe Disable input is the same as with the sequence input. Jumper S3 has the drive set for an external power supply. When not using the Safe Disable input feature, remove the jumper shorting the input and connect an external power supply.
- Time from input open to drive output stop is less than 1 ms. The wiring distance for the Safe Disable inputs should not exceed 30 m.
- Note: When an Application Preset is selected, the drive I/O terminal functions change.

Control Circuit and Serial Communication Circuit Terminal Layout

Terminal Functions

Main Circuit Term	ninals			Max. A	pplicable Motor Capaci	ty indicates Heavy Duty
Voltage		200 V			400 V	
Model CIMR-AA	2A0004 to 2A0081	2A0110, 2A0138	2A0169 to 2A0415	4A0002 to 4A0044	4A0058, 4A0072	4A0088 to 4A1200
Max. Applicable Motor Capacity kW	0.4 to 18.5	22, 30	37 to 110	0.4 to 18.5	22, 30	37 to 560
R/L1, S/L2, T/L3	Mai	n circuit input power su	pply	Ma	in circuit input power su	pply
U/T1, V/T2, W/T3		Drive output			Drive output	
B1, B2	Braking re	esistor unit	-	Braking re	esistor unit	-
- +1 +2	· DC reactor (+1, +2) · DC power supply (+1, $-$)*	DC power supply (+1, -)*	DC power supply (+1, -)* Braking unit (+3, -)	· DC reactor (+1, +2) · DC power supply (+1, −)*	DC power supply (+1, -)*	DC power supply (+1, -)* Braking unit
+3	-		(+3, -)	-		(+3, -)
Ð	Gro	und terminal (100 Ω or	less)	Gro	bund terminal (10 Ω or l	ess)

 \ast DC power supply input terminals (+1, –) are not UL and CE certified.

Control Circuit Input Terminals (200 V/400 V Class)

Terminal Type	Termi- nal	Signal Function	Description	Signal Level
	S1	Multi-function input selection 1	Closed: Forward run (default) Open: Stop (default)	
	S2	Multi-function input selection 2	Closed: Reverse run (default) Open: Stop (default)	
	S3	Multi-function input selection 3	External fault, N.O. (default)	
Multi-Function	S4	Multi-function input selection 4	Fault reset (default)	
Digital Input	S5	Multi-function input selection 5	Multi-step speed reference 1 (default)	Photocoupler 24 Vdc, 8 mA
Digital Input	S6	Multi-function input selection 6	Multi-step speed reference 2 (default)	
	S7	Multi-function input selection 7	Jog frequency (default)	
	S8	Multi-function input selection 8	Closed: External baseblock	
	SC	Multi-function input selection common	Multi-function input selection common	
	RP	Multi-function pulse train input	Frequency reference (default) (H6-01 = 0)	0 to 32 kHz (3 kΩ)
	+V	Setting power supply	+10.5 V power supply for analog reference (2	0 mA max.)
	-V	Setting power supply	-10.5 V power supply for analog reference (2	20 mA max.)
	A1	Multi-function analog input 1	-10 to +10 Vdc for -100 to 100%, 0 to +10 Vdc for 0 to 10	0% (impedance 20 kΩ), Main frequency reference (default)
			DIP switch S1 sets the terminal for a voltage or	current input signal
Main Frequen-	4.0	Multi function and an innut O	-10 to +10 Vdc for -100 to +100%, 0 to +10 V	dc for 0 to 100% (impedance 20 k Ω)
cy Reference	A2	Multi-function analog input 2	4 to 20 mA for 0 to 100%, 0 to 20 mA for 0 to 10	00% (impedance 250 Ω)
Input			Added to the reference value of the analog frequencies	uency for the main frequency reference (default)
	4.0	Multi function and an innut O	-10 to +10 Vdc for -100 to +100%, 0 to +10	Vdc for 0 to 100% (impedance 20 k Ω)
	A3	Multi-function analog input 3	Auxiliary frequency reference (default)	·
	AC	Frequency reference common	0 V	
	E(G)	Connection to wire shielding and option card ground wire	-	_
Multi-Function	P1	Multi-function photocoupler output (1)	Zero speed (default)	40 \/da 0 to 50 m/
Photocoupler	P2	Multi-function photocoupler output (2)	Speed agree (default)	48 Vdc, 2 to 50 mA Photocoupler output*1
Output	PC	Photocoupler output common	-	
Foult Dolou	MA	N.O. output	Closed: Fault	
Fault Relay Output	MB	N.O. output	Open: Fault	Relay output
Oulpul	MC	Digital output common	-	250 Vac, 10 mA to 1 A, 30 V, 10 mA to 1 A
Multi-Function	M1	Multi function digital output	During run (default)	Minimum load: 5 Vdc, 10 mA
Digital Output*2	M2	Multi-function digital output	Closed: During run	
	MP	Pulse train input	Output frequency (default) (H6-06 = 102)	0 to 32 kHz (2.2 kΩ)
Monitor Output	FM	Multi-function analog monitor (1)	Output frequency (default)	0 to +10 Vdc for 0 to 100%
Mornitor Output	AM	Multi-function analog monitor (2)	Output current (default)	-10 to 10 Vdc for -100 to 100%
	AC	Analog common	0 V	
	H1	Safety input 1	24 Vdc 8 mA. One or both open: Output disat	oled. Both closed: Normal operation.
Safety Input	H2	Safety input 2	Internal impedance 3.3 k Ω , switching time at	least 1 ms.
	110	Safety input common	Safety input common	
	HC		callety input common	
Safety Monitor	DM+	Safety monitor output	Outputs status of Safe Disable function. Closed	48 Vdc, 50 mA or less

*1: Connect a flywheel diode as shown below when driving a reactive load such as a relay coil. Diode must be rated higher than the circuit voltage.
 *2: Refrain from assigning functions to terminals M1 and M2 that involve frequent switching, as doing so may shorten relay performance life. Switching life is estimated at 200,000 times (assumes 1 A, resistive load).

	Flywheel diode
External power 48 V max.	Coil (50 mA max.)
	T lasa di

Serial Communication Terminals (200 V/400 V Class)

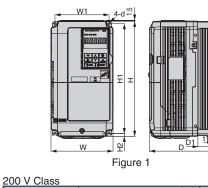
Classification	Termi- nal	Signal Function	Description	Signal Level
MEMORILE	R+	Communications input (+)	MEMOBUS/Modbus communications: Use a	RS-422/485
	EMOBUS/ R– Communications input (–)	Communications input (-)	RS-485 or RS-422 cable to connect the	MEMOBUS/Modbus
Modbus —	S+	Communications output (+)	drive.	communications protocol
tions	S–	Communications output (-)		115.2 kbps (max.)
uons	IG	Shield ground	0	V

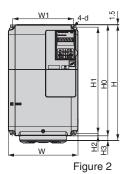
Enclosures

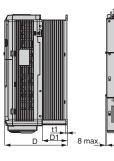
Enclosures of standard products vary depending on the model. Refer to the table below.

200 V Class															I	ND : N	lorma	l Duty,	HD :	Heavy	/ Duty
Model CIMR-AA2A		0004	0006	0008	0010	0012	0018	0021	0030	0040	0056	0069	0081	0110	0138	0169	0211	0250	0312	0360	0415
Max. Applicable	ND	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	110
Motor Capacity (kW)	HD	0.4	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110
Enclosure Panel [NEMA]	inclosure Panel [NEMA Type 1] Standard														to orde	er					*
Open-Chassis	Open-Chassis Remove top cover of wall-mount enclosure for IP20 rating											IP00 s	tandar	d				Order-	made		

* NEMA 1 Type 1 is not available for this capacity.

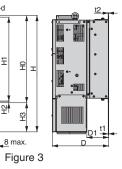

400 V Class


ND : Normal Duty, HD : Heavy Duty

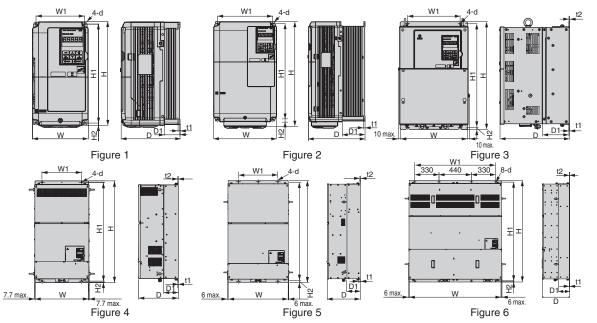

100 1 01000																							- •·· , ,			,	,
Model CIMR-AA4A		0002	0004	0005	0007	0009	0011	0018	0023	0031	0038	0044	0058	0072	0088	0103	0139	0165	0208	0250	0296	0362	0414	0515	0675	0930	1200
Max. Applicable ND 0.75 1.5 2.2 3 3.7 5.5 7.5 11 15 18.5 22 Motor Capacity (kW) HD 0.4 0.75 1.5 2.2 3 3.7 5.5 7.5 11 15 18.5 22									22	30	37	45	55	75	90	110	132	160	185	220	250	355	500	630			
Motor Capacity (kW)	HD	0.4	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220	315	450	560
Enclosure Panel [NEMA Type 1] Standard										Made	e to o	rder										*					
Open-Chassis Remove top cover of wall-mount enclosure for IP20 rat								ating	IP00	stand	dard								Orde	r-ma	de						

* NEMA 1 Type 1 is not available for this capacity.

Enclosure Panel [NEMA Type 1]



W1


Ŵ

Model	Max. Applicable M	otor Capacity (kW)	Figure				C)imens	sions (I	mm)						Weight	Cooling
CIMR-AA2A	Normal Duty	Heavy Duty	rigule	W	Н	D	W1	H0	H1	H2	H3	D1	t1	t2	d	(kg)	Cooling
0004	0.75	0.4														3.1	
0006	1.1	0.75														3.1	Self
0008	1.5	1.1		140	260	147	122	-	248	6	-	38	5	-			
0010	2.2	1.5														3.2	cooling
0012	3.0	2.2	4												M5		
0018	3.7	3.0				164								-		3.5	
0021	5.5	3.7		140	260	104	122	_	248	6	_	55	5	-		5.5	
0030	7.5	5.5		140	200	167	122	_	240	0	-	55	5	-		4.0	
0040	11	7.5				-								-		-	
0056	15	11		180	300	187	160	-	284	8	-	75	5	-		5.6	
0069	18.5	15	1	220	350	197	192	-	335	8	-	78	5	-		8.7	
0081	22	18.5	2	220	365	197	192	350	335	8	15	78	5	-		9.7	Fan
0110	30	22		254	534	258	195	400	385		134	100			M6	23	cooled
0138	37	30		279	614	200	220	450	435	7.5	164	100	2.3	2.3	1010	28	
0169	45	37		329	730	283	260	550	535	1.5	180	110	2.0	2.0		41	
0211	55	45	3	329	730	203	200	550	555		100	110				42	
0250	75	55		456	960	330	325	705	680	12.5	255	130	3.2	3.2	M10	83	
0312	90	75														88	
0360	110	90		504	1168	350	370	800	773	13	368	130	4.5	4.5	M12	108	

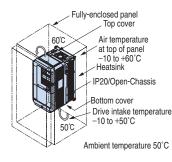
Model	Max. Applicable M	otor Capacity (kW)	Figure				C	imens	ions (i							Weight	Cooling
CIMR-AA4A	Normal Duty	Heavy Duty	Figure	W	Н	D	W1	H0	H1	H2	H3	D1	t1	t2	d	(kg)	Cooling
0002	0.75	0.4															Self
0004	1.5	0.75		140	260	147	122	-	248	6	-	38	5	-		3.2	cooling
0005	2.2	1.5															cooling
0007	3.0	2.2														3.4	
0009	3.7	3.0				164									M5	3.5	
0011	5.5	3.7	1	140	260		122	-	248	6	-	55	5	-		0.0	
0018	7.5	5.5														3.9	
0023	11	7.5				167											
0031	15	11		180	300		160	_	284	8	_	55	5	_		5.4	
0038	18.5	15				187			-	-		75	-			5.7	
0044	22	18.5		220	350	197	192	-	335	8	-	78	5	-		8.3	_
0058	30	22		254	465	258	195	400	385		65	100		2.3		23	Fan
0072	37	30		279	515	258	220	450	435							27	cooled
0088	45	37			630	258		510	495	7.5	120	105	2.3	3.2	M6	39	
0103	55	45		329			260	0.0									
0139	75	55	3		730	283		550	535		180	110		2.3		45	
0165	90	75	-									-		-		46	
0208	110	90		456	960	330	325	705	680	12.5	255	130	3.2	3.2	M10	87	
0250	132	110														106	
0296	160	132		504	1168	350	370	800	773	13	368	130	4.5	4.5	M12	112	
0362	185	160														117	

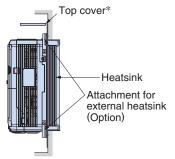
Open-Chassis (IP00)

200 V Class

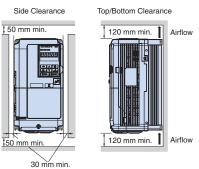
Model	Max. Applicable M	otor Capacity (kW)	Figuro					Dimensi	ons (mm	ı)				Weight	Cooling
CIMR-AA2A	Normal Duty	Heavy Duty	Figure	W	Н	D	W1	H1	H2	D1	t1	t2	d	(kg)	Cooling
0004	0.75	0.4												3.1	
0006	1.1	0.75												5.1	Self
0008	1.5	1.1		140	260	147	122	248	6	38	5	-			cooling
0010	2.2	1.5												3.2	cooling
0012	3	2.2	1										M5		
0018	3.7	3				164							NIS NIS	3.5	
0021	5.5	3.7		140	260	104	122	248	6	55	5	_		0.5	
0030	7.5	5.5		140	200	167	122	240			0			4	
0040	11	7.5				_									
0056	15	11		180	300	187	160	284	8	75	5	-		5.6	
0069	18.5	15	1	220	350	197	192	335	8	78	5	-		8.7	
0081	22	18.5	2	220	365	197	192	335	8	78	5	-		9.7	Fan
0110	30	22		250	400	258	195	385	7.5	100	2.3	2.3	M6	21	cooled
0138	37	30		275	450	200	220	435	7.5	100	2.0	2.0		25	cooleu
0169	45	37		325	550	283	260	535	7.5	110	2.3	2.3		37	
0211	55	45	3	020	000	200	200		7.5	110	2.0	2.0		38	
0250	75	55	Ŭ	450	705	330	325	680	12.5	130	3.2	3.2	M10	76	
0312	90	75			, 00		020		12.5	100	0.2	0.2		80	
0360	110	90		500	800	350	370	773	13	130	4.5	4.5	M12	98	
0415	110	110		000	000	000	0/0		.0	1.50	1.0			99	

Model	Max. Applicable M	otor Capacity (kW)	Figure					Dimensi	ons (mm	ı)				Weight	Cooling
CIMR-AA4A	Normal Duty	Heavy Duty	Figure	W	Н	D	W1	H1	H2	D1	t1	t2	d	(kg)	Cooling
0002	0.75	0.4													Self
0004	1.5	0.75		140	260	147	122	248	6	38	5	-		3.2	cooling
0005	2.2	1.5													cooling
0007	3	2.2												3.4	
0009	3.7	3		140	260	164	122	248	6	55	5	-	M5	3.5	
0011	5.5	3.7	1										1015	3.5	
0018	7.5	5.5		140	260	167	122	248	6	55	5	_		3.9	
0023	11	7.5		140	200	107	122	240	0	- 55	5	_		5.9	
0031	15	11		180	300	167	160	284	8	55	5	_		5.4	
0038	18.5	15		100	500	187	100	204	0	75		_		5.7	
0044	22	18.5		220	350	197	192	335	8	78	5	-		8.3	
0058	30	22		250	400	258	195	385	7.5	100		2.3		21	
0072	37	30		275	450	200	220	435	7.5	100		2.0		25	
0088	45	37		325	510	258	260	495		105	2.3	3.2	M6	36	Fan
0103	55	45		020	010	200	200	+00	7.5	100	2.0	0.2			cooled
0139	75	55	3	325	550	283	260	535	1.5	110		2.3		41	cooleu
0165	90	75		020								-		42	
0208	110	90		450	705	330	325	680	12.5	130	3.2	3.2	M10	79	
0250	132	110												96	
0296	160	132		500	800	350	370	773	13	130	4.5	4.5	M12	102	
0362	185	160												107	
0414	220	185	4	500	950		370	923	13	135				125	
0515	250	220	5	670	1140	370	440	1110	15	150	4.5	4.5	M12	221	
0675	355	315		070	1140		440	1110	15	130				221	
0930	500	450	6	1250	1380	370	1100	1345	15	150	4.5	4.5	M12	545	
1200	630	560		1200	1000	570	1100	1040	15	130	5	5		555	


The Open-Chassis type drive can be installed in a fully-enclosed panel.


An open-chassis model in a protective enclosure with the heatsink inside the panel allows for intake air temperature up to 50°C.

The heatsink can alternatively be mounted outside the enclosure panel, thus reducing the amount of heat inside the panel and allowing for a more compact set up.


Current derating or other steps to ensure cooling are required at $50\,^\circ\text{C}$

· Cooling Design for Fully-Closed Enclosure Panel · Mounting the External Heatsink

Enclosure panel (CIMR-AA2A0004 to 0081, CIMR-AA4A0002 to 0044) can be installed with the top and bottom covers removed. · Ventilation Space

For installing the drive with capacity of 200 V class 22 kW or 400 V class 22kW, be sure to leave enough clearance during installation for suspension eye bolts on both side of the unit and main circuit wiring for maintenance.

Drive Watts Loss Data

200 V Class Normal Duty Ratings

Mo	odel Number		0004	0000	0000	0010	0010	0010	0004	0000	0040	0050	0000	0001	0110	0100	0100	0011	0050	0010	0000	0445
CIMR-	AA2A		0004	0006	0008	0010	0012	0018	0021	0030	0040	0056	0069	0081	0110	0138	0169	0211	0250	0312	0360	0415
Max. Applic	able Motor Capacity	kW	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	110
Rated O	utput Current*	Α	3.5	6	8	9.6	12	17.5	21	30	40	56	69	81	110	138	169	211	250	312	360	415
Heat	Heatsink	W	18	31	43	57	77	101	138	262	293	371	491	527	718	842	1014	1218	1764	2020	2698	2672
	Internal	W	47	51	52	58	64	67	83	117	144	175	204	257	286	312	380	473	594	665	894	954
Loss	Total Heat Loss	W	65	82	95	115	141	168	221	379	437	546	696	784	1004	1154	1394	1691	2358	2685	3591	3626

400 V Class Normal Duty Ratings

Mo	odel Number		0000	0004	0005	0007	0000	0011	0010	0000	0001	0000	0044	0050	0070	0000	0100	0100	0105	0000	0050	0000	0000	0414	0515	0075	0000	1200
CIMR-	AA4A		0002	0004	0005	0007	0009	0011	0018	0023	0031	0038	0044	0058	0072	0088	0103	0139	0100	0208	0250	0296	0362	0414	0515	0075	0930	1200
Max. Applica	able Motor Capacity	kW	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220	250	355	500	630
Rated O	utput Current*	А	2.1	4.1	5.4	6.9	8.8	11.1	17.5	23	31	38	44	58	72	88	103	139	165	208	250	296	362	414	515	675	930	1200
Heat	Heatsink	W	20	32	45	62	66	89	177	216	295	340	390	471	605	684	848	1215	1557	1800	2379	2448	3168	3443	4850	4861	8476	8572
	Internal	W	48	49	53	59	60	73	108	138	161	182	209	215	265	308	357	534	668	607	803	905	1130	1295	1668	2037	2952	3612
Loss	Total Heat Loss	W	68	81	98	121	126	162	285	354	456	522	599	686	870	992	1205	1749	2225	2407	3182	3353	4298	4738	6518	6898	11428	12184
* Rated	output current	bas	sed or	n carr	ier fre	quen	cy of	2 kHz	Ζ.																			

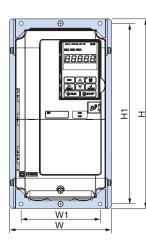
200 V Class Heavy Duty Ratings

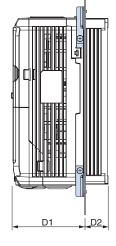
Mo	del Number		0004	0006	0008	0010	0012	0010	0001	0030	0040	0056	0069	0081	0110	0138	0100	0011	0050	0312	0000	0415
CIMR-	AA2A		0004	0006	0008	0010	0012	0018	0021	0030	0040	0000	0069	0081	0110	0138	0169	0211	0250	0312	0360	0415
Max. Applic	able Motor Capacity	kW	0.4	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110
Rated O	utput Current	А	3.2*1	5*1	6.9*1	8*1	11 *1	1 4*1	17.5*1	25*1	33*1	47*1	60*1	75*1	85*1	115* ¹	145* ²	180*2	215* ²	283* ²	346*2	415* ³
Heat	Heatsink	W	15	24	35	43	64	77	101	194	214	280	395	460	510	662	816	976	1514	1936	2564	2672
	Internal	W	44	48	49	52	58	60	67	92	105	130	163	221	211	250	306	378	466	588	783	954
Loss	Total Heat Loss	W	59	72	84	95	122	137	168	287	319	410	558	681	721	912	1122	1354	1980	2524	3347	3626

400 V Class Heavy Duty Ratings

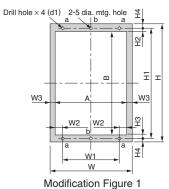
M	odel Number		0002	0004	0005	0007	0000	0011	0010	0000	0001	0000	0044	0050	0070	0000	0100	0100	0105	0000	0050	0000	0000	0414	0515	0075	0000	1200
CIMR	AA4A		0002	0004	0005	0007	0009	0011	0018	0023	0031	0038	0044	0058	0072	0088	0103	0139	0105	0208	0250	0296	0362	0414	0515	0675	0930	1200
Max. Applic	able Motor Capacity	kW	0.4	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220	315	450	560
Rated C	utput Current	А	1.8*1	3.4*1	4.8*1	5.5*1	7.2*1	9.2*1	14.8*1	18*1	24*1	31*1	39*1	45*1	60*1	75*1	91 *1	112*1	150*2	180*2	216*2	260*2	304*2	370*2	450*3	605*3	810* ³	1090*3
Heat	Heatsink	W	16	25	37	48	53	68	135	150	208	263	330	348	484	563	723	908	1340	1771	2360	2391	3075	3578	3972	4191	6912	7626
	Internal	W	45	46	49	53	55	61	86	97	115	141	179	170	217	254	299	416	580	541	715	787	985	1164	1386	1685	2455	3155
Loss	Total Heat Loss	W	61	71	86	101	108	129	221	247	323	404	509	518	701	817	1022	1324	1920	2312	3075	3178	4060	4742	5358	5876	9367	10781

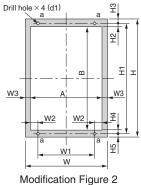
 \pm 1: Rated output current based on carrier frequency of 8 kHz.

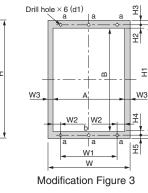

*2: Rated output current based on carrier frequency of 5 kHz.

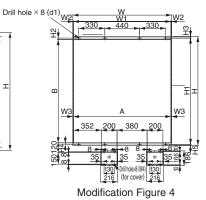

 \pm 3: Rated output current based on carrier frequency of 2 kHz.

Attachment for External Heatsink


Additional attachments are required to install the following models: CIMR-AA2A0004 to 0081, CIMR-AA4A0002 to 0044. The final product will be wider and taller than the drive. Additional attachments are required for CIMR-AA2A0110 and above, CIMR-AA4A0058 and above.


Note: Contact Yaskawa for information on attachments for earlier models.





Panel Modification for External Heatsink

* Panel opening needed to replace an air filter installed to the bottom of the drive. The opening should be kept as small as possible.

200 V Class

Model	Modifi- cation					D	imen	sions	s (mn	n)				
CIMR-AA	Figure	W	н	W1	W2	W3	H1	H2	H3	H4	H5	Α	В	d1
2A0004														
2A0006														
2A0008														
2A0010														
2A0012		158	294	122	9	9	280	8.5	8.5	7	-	140	263	M5
2A0018	1													
2A0021														
2A0030]													
2A0040]													
2A0056		198	329	160	10	9	315	17.5	10.5	7	-	180	287	M5
2A0069]	220	380	102	14	9	362	13	8	9	_	220	2/1	
2A0081		230	300	192	14	9	302	15	0	9		220	341	
2A0110		250	400	195	19.5	8	385	8	7.5	8	7.5	234	369	M6
2A0138]	275	450	220	19.5	0	435	0	7.5	0	7.5	259	419	IVIO
2A0169		325	550	260	24 5	8	535	8	7.5	8	7.5	309	510	
2A0211	2	525	550	200	24.0	0	555	0	1.5	0	1.5	009	519	
2A0250	²	150	705	325	54 5	8	680	12.5	12.5	125	125	131	655	M10
2A0312		430	105	325	54.5	0	080	12.5	12.5	12.5	12.5	434	035	IVI I U
2A0360		500	800	370	57	8	773	16	14	17	13	181	740	M12
2A0415		000	000	570	57	0	113	10	14	17	13	+04	/ 40	10112

400 V Class

_

	133													
Model	Modifi-					D	imen	sions	s (mn	n)				
CIMR-AA	cation Figure	W	н	W1	W2	W3	H1	H2	H3	H4	H5	А	В	d1
4A0002														
4A0004														
4A0005														
4A0007		150	294	122	9	9	280	8.5	8.5	7	_	140	262	
4A0009		158	294	122	9	9	280	8.S	8.S	1		140	203	М5
4A0011	1													1015
4A0018														
4A0023														
4A0031		100	329	160	10	9	215	17.5	10.5	7	_	180	207	
4A0038		190	329	100	10	9	315	17.5	10.5	1		100	207	
4A0044		238	380	192	14	9	362	13	8	9	-	220	341	M6
4A0058		250	400	195	19.5	8	385	8	7.5	8	7.5	234	369	М6
4A0072		275	450	220	19.5	0	435	0	7.5	0	7.5	259	419	1010
4A0088			510				495						479	
4A0103		325	510	260	24.5	8	495	8	7.5	8	7.5	309	4/9	м6
4A0139		325	550	200	24.5	0	535	0	7.5	0	7.5	309	519	1010
4A0165	2		550				535						519	
4A0208		450	705	325	54.5	8	680	12.5	12.5	12.5	12.5	434	655	M10
4A0250														
4A0296		500	800	370	57	8	773	16	14	17	13	484	740	M12
4A0362														
4A0414		500	950	370	57	8	923	16	14	17	13	484	890	M12
4A0515	3	670	1110	440	107	8	1110	19	15	19	15	654	1070	M12
4A0675	3	070	1140	440	107	0	1110	19	15	19	15	054	10/2	1112
4A0930	4	1250	1380	1100	67	8	1345	19	20	19	15	123/	1307	M12
4A1200	+	1200	1000	1100	0/	0	1040	19	20	19	10	1204	1007	11112

Fully-Enclosed Design

200 V Class

Model		D	imensi	on (mr	n)		Code No.
CIMR-AA2A	W	Н	W1	H1	D1	D2	Code No.
2A0004							
2A0006							
2A0008					109	36.4	EZZ020800A
2A0010							
2A0012	158	294	122	280			
2A0018					109	53.4	
2A0021					109	55.4	EZZ020800B
2A0030					112	53.4	
2A0040					112	55.4	
2A0056	198	329	160	315	112	73.4	EZZ020800C
2A0069	000	380	192	362	119	76.4	EZZ020800D
2A0081	238	300	192	302	119	/0.4	

400 V Class

Model		D	imensi	on (mr	n)		Code No.
CIMR-AA4A	W	Н	W1	H1	D1	D2	Code No.
4A0002							
4A0004					109	36.4	EZZ020800A
4A0005							
4A0007	158	294	122	280			
4A0009		294	122	200	109	53.4	
4A0011							EZZ020800B
4A0018					112	53.4	
4A0023					112	55.4	
4A0031	198	329	160	315	112	53.4	EZZ020800C
4A0038	190	529	100	515	112	73.4	EZZ020800C
4A0044	238	380	192	362	119	76.4	EZZ020800D

I

Peripheral Devices and Options

		Name	Purpose	Model, Manufacturer	Page
Power Supply		Ground Fault Interrupter (GFI)	Protects the drive from ground faults that could otherwise result in electric shock or fire. Choose a GFI designed to minimize harmonics specifically for AC drives. Use one GFI per drive, each with a current rating of at least 30 mA.	Recommended: NV series by Mitsubishi Electric Corporation NS Series by Schneider Electric	36
	Fusible Disconnect Ground Fault Interrupter,	Circuit Breaker	Protects circuitry from excessive current. A circuit breaker should be installed between the main power supply and an AC reactor.	Recommended: NF series by Mitsubishi Electric Corporation	36
	Circuit Breaker (MCCB)	Magnetic Contactor	Interrupts the power supply to the drive. In addition to protecting drive circuitry, a magnetic contactor also prevents damage to a braking resistor if used.	Recommended: SC series by Fuji Electric FA Components & Systems Co., Ltd	37
	Magnetic Contactor	Surge Protector	Absorbs the voltage surge from switching of electro-magnetic contactors and control relays. Install a surge protector to the magnetic contactors and control relays as well as magnetic valves and magnetic braking coil.	DCR2 series RFN series by Nippon Chemi- con Corporation	37
		DC Reactor	Improve the input power ratio of the drive. The DC reactor is a built-in model of 22 kW or more. Option: 18.5 kW or less. • Used for harmonic current suppression and total improving power factor.	UZDA series	38
	Surge Protector	AC Reactor	Should be used if the power supply capacity is larger than 600 kVA. Suppresses harmonic current Improves the power factor of the input power supply	UZBA series	40
	AC Reactor	Zero Phase Reactor	Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive. Can be used on both the input and output sides.	F6045GB F11080GB by Hitachi Metals, Ltd.	42
44A	Zero Phase Reactor	Fuse / Fuse Holder	Protects internal circuitry in the event of component failure. Fuse should be connected to the input terminal of the drive. Note: Refer to the instruction manual for information on UL approval.	CR2LS series CR6L series CM, CMS series by Fuji Electric FA Compo- nents & Systems Co., Ltd	43
₩.	Fuse Input Noise Filter	Capacitor-Type Noise Filter	Reduces noise from the line that enters into the drive input power system. The noise filter can be used in combination with a zero-phase reactor. Note: Available for drive input only. Do not connect the noise filter to the output terminals.	3XYG 1003 by Okaya Electric Industries Co., Ltd.	43
		Input Noise Filter	Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive. Note: For CE Marking (EMC Directive) compliant models, refer to A1000 Technical Manual.	LNFD series LNFB series FN series	44
		Output Noise Filter	Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive.	LF series by NEC Tokin Corporation	46
	DC Reactor	Braking Resistor	Used to shorten the deceleration time by dissipating regenerative energy through a resistor. Usage 3% ED, requires a separate attachment.	ERF-150WJ series CF120-B579 series	48
		Attachment for Braking Resistor	A braking resistor can be attached to the drive.	EZZ020805A	51
Braking Resistor, Braking Resistor	Momentary Power Loss Recovery Unit	Braking Resistor Unit	Used to shorten the deceleration time by dissipating regenerative energy through a resistor unit (10% ED). A thermal overload relay is built in (10% ED).	LKEB series	48
Unit, or Braking Unit		Braking Unit	Shortened deceleration time results when used with a Braking Resistor Unit.	CDBR series	48
		24 V Power Supply	Provides power supply for the control circuit and option boards. Note: Parameter settings cannot be changed when the drive is operating solely from this power supply.	PS-A10H PS-A10L	47
	B Copy Unit	VS System Module	System control device that enables optimum system configura- tion by combining modules for automatic control system.	JGSM series	52
	-45/USB adapter)	USB Copy Unit (RJ-45/ USB compatible plug)	Can copy parameter settings easily and quickly to be later transferred to another drive. Adapter for connecting the drive to the USB port of a PC	JVOP-181	55
200	PC	Support Tools USB Cable	Connect the drive and PC when using DriveWizard or DriveWorksEZ. The cable length must be 3 m or less.	Commercially available USB2.0 A/B cable.	_
	bise Filter utput side)	LCD Operator	For easier operation when using the optional LCD operator. Allows for remote operation. Includes a Copy function for saving drive settings.	JVOP-180	54
		LCD Operator Extension Cable	Cable for connecting the LCD operator.	WV001: 1 m WV003: 3 m	54
	Zero Phase Reactor	Momentary Power Loss Recovery Unit	Ensures continuous drive operation for a power loss of up to 2 s.	P0010 Type (200 V class) P0020 Type (400 V class)	47
		Frequency Meter, Current Meter Variable Resistor Board (20 kΩ)		DCF-6A ETX003120	56 56
Щ		Frequency Setting Potentiometer (2 kΩ)		RH000739	56
	Low Voltage Manual Load Switch	Frequency Meter Adjusting Potentiometer (20 k Ω)	Allows the user to set and monitor the frequency, current, and voltage using an external device.	RH000850	56
	Gwitch	Control Dial for Frequency Setting Potentiometer		CM-3S	56
	Motor	Output Voltage Meter Voltage Transformer		SCF-12NH UPN-B	57
		Attachment for External Heatsink	Required for heatsink installation. Current derating may be needed when using a heatsink.	-	33
		Low Voltage Manual Load Switch	Prevents shock from the voltage created on the terminals board from a coasting synchronous motor.	Recommended: AICUT, LB series by Aichi Elec- tric Works Co., Ltd	_
34 = Ground		Note: Contact the manufac	turer in question for availability and specifications of non-Y		

Option Cards

Ту	ре	Name			Manual No.
	Speed Reference Card	Analog Input	AI-A3	Enables high-precision and high-resolution analog speed reference setting. • Input signal level: -10 to +10 Vdc (20 kΩ) 4 to 20 mA (500 Ω) • Input channels: 3 channels, DIP switch for input voltage/input current selection • Input resolution: Input voltage 13 bit signed (1/8192) Input current 1/6554	TOBPC73060038
	Speed F	Digital Input	DI-A3	Enables 16-bit digital speed reference setting. • Input signal: 16 bit binary, 2 digit BCD + sign signal + set signal • Input voltage: +24 V (isolated) • Input current: 8 mA User-set: 8 bit, 12 bit, 16 bit	TOBPC73060039
		DeviceNet Interface	SI-N3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through	TOBPC73060043
		RoHS compliant		DeviceNet communication with the host controller.	SIEPC73060043
	ns Option Card	CC-Link Interface	SI-C3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through	TOBPC73060044
		RoHS compliant		CC-Link communication with the host controller.	SIEPC73060044
		PROFIBUS-DP	SI-P3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through	TOBPC73060042
or)		Interface RoHS compliant		CANopen communication with the host controller.	SIEPC73060042
nect	licatic	CANopen Interface	SI-S3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through	TOBPC73060045
o cor	Communications	RoHS compliant		CANopen communication with the host controller.	SIEPC73060045
cted t		MECHATROLINK-II Interface	SI-T3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through	TOBPC73060050
onned		SI-T3 RoHS compliant		MECHATROLINK-II communication with the host controller.	SIEPC73060050
Built-in Type (connected to connector)		LONWORKS Interface	Available soon	Used for HVAC control, running or stopping the drive, setting or refer- encing parameters, and monitoring output current, watt-hours, or similar items through LONWORKS communications with the host controller.	_
Built	Option Card	Analog Monitor	AO-A3	Outputs analog signal for monitoring drive output state (output freq., output current etc.). • Output resolution: 11 bit signed (1/2048) • Output voltage: -10 to +10 Vdc (non-isolated) • Terminals: 2 analog outputs	TOBPC73060040
	Monitor O	Digital Output DO-A3		Outputs isolated type digital signal for monitoring drive run state (alarm signal, zero speed detection, etc.) • Terminals: 6 photocoupler outputs (48 V, 50 mA or less) 2 relay contact outputs (250 Vac, 1 A or less 30 Vdc, 1 A or less)	TOBPC73060041
	PG Speed Controller Card	Complimentary Type PG		For control modes requiring a PG encoder for motor feedback. • Phase A, B, and Z pulse (3-phase) inputs (complementary type) • Max. input frequency: 50 kHz • Pulse monitor output: Open collector, +24 V, max. current 30 mA • Power supply output for PG: +12 V, max. current 200 mA	TOBPC73060036
		Line Driver PG	PG-X3	For control modes requiring a PG encoder for motor feedback. • Phase A, B, and Z pulse (differential pulse) inputs (RS-422) • Max. input frequency: 300 kHz • Pulse monitor output: RS-422 • Power supply output for PG: +5 V or +12 V, max. current 200 mA	TOBPC73060037

Note: 1. Each communication option card requires a separate configuration file to link to the network. 2. PG speed controller card is required for PG control.

Ground Fault Interrupter, Circuit Breaker

Base device selection on motor capacity.

[Mitsubishi Electric Corporation]

Circuit Breaker [Mitsubishi Electric Corporation]

200 V Class

Matan	Ground Fault Interrupter						Circuit Breaker						
Motor Capacity	Without Reactor			With Reactor			Without Reactor			With Reactor			
(kW)	Model	Rated	Interrupt Capacity	Model	Rated	Interrupt Capacity	Model	Rated	Interrupt Capacity	Model	Rated	Interrupt Capacity	
(,		Current (A)	(kA) lcu/lcs*		Current (A)	(kA) Icu/Ics*		Current (A)	(kA) Icu/Ics*		Current (A)	(kA) Icu/Ics*	
0.4	NV32-SW	5	10/5	NV32-SW	5	10/5	NF32	5	7.5/4	NF32	5	7.5/4	
0.75	NV32-SW	10	10/5	NV32-SW	10	10/5	NF32	10	7.5/4	NF32	10	7.5/4	
1.5	NV32-SW	15	10/5	NV32-SW	10	10/5	NF32	15	7.5/4	NF32	10	7.5/4	
2.2	NV32-SW	20	10/5	NV32-SW	15	10/5	NF32	20	7.5/4	NF32	15	7.5/4	
3.7	NV32-SW	30	10/5	NV32-SW	20	10/5	NF32	30	7.5/4	NF32	20	7.5/4	
5.5	NV63-SW	50	15/8	NV63-SW	40	15/8	NF63	50	7.5/4	NF63	40	7.5/4	
7.5	NV125-SW	60	50/25	NV63-SW	50	15/8	NF125	60	30/15	NF63	50	7.5/4	
11	NV125-SW	75	50/25	NV125-SW	75	50/25	NF125	75	30/15	NF125	75	30/15	
15	NV250-SW	125	50/25	NV125-SW	100	50/25	NF250	125	35/18	NF125	100	30/15	
18.5	NV250-SW	150	50/25	NV250-SW	125	50/25	NF250	150	35/18	NF250	125	35/18	
22	-	-	—	NV250-SW	150	50/25	-	—	—	NF250	150	35/18	
30	—	-	—	NV250-SW	175	50/25	-	-	-	NF250	175	35/18	
37	-	-	—	NV250-SW	225	50/25	-	—	—	NF250	225	35/18	
45	-	-	-	NV400-SW	250	85/85	-	-	-	NF400	250	50/25	
55	-	-	-	NV400-SW	300	85/85	-	-	-	NF400	300	50/25	
75	-	-	—	NV400-SW	400	85/85	_	_	_	NF400	400	50/25	
90	-	-	-	NV630-SW	500	85/85	-	_	-	NF630	500	50/25	
110	-	-	-	NV630-SW	600	85/85	-	_	-	NF630	600	50/25	

*: Icu: Rated ultimate short-circuit breaking capacity Ics: Rated service short-circuit breaking capacity Note: 200 V models 22 kW and above come with a built-in DC reactor that improves the power factor.

400 V Class

	Ground Fault Interrupter						Circuit Breaker						
Motor	Without Reactor			With Reactor			Without Reactor			With Reactor			
Capacity (kW)	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*1	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*1	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*1	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*1	
0.4	NV32-SW	5	5/2	NV32-SW	5	5/2	NF32	3	2.5/1	NF32	3	2.5/1	
0.75	NV32-SW	5	5/2	NV32-SW	5	5/2	NF32	5	2.5/1	NF32	5	2.5/1	
1.5	NV32-SW	10	5/2	NV32-SW	10	5/2	NF32	10	2.5/1	NF32	10	2.5/1	
2.2	NV32-SW	15	5/2	NV32-SW	10	5/2	NF32	15	2.5/1	NF32	10	2.5/1	
3.7	NV32-SW	20	5/2	NV32-SW	15	5/2	NF32	20	2.5/1	NF32	15	2.5/1	
5.5	NV32-SW	30	5/2	NV32-SW	20	5/2	NF32	30	2.5/1	NF32	20	2.5/1	
7.5	NV32-SW	30	5/2	NV32-SW	30	5/2	NF32	30	2.5/1	NF32	30	2.5/1	
11	NV63-SW	50	7.5/4	NV63-SW	40	7.5/4	NF63	50	2.5/1	NF63	40	2.5/1	
15	NV125-SW	60	25/13	NV63-SW	50	7.5/4	NF125	60	10/5	NF63	50	2.5/1	
18.5	NV125-SW	75	25/13	NV125-SW	60	25/13	NF125	75	10/5	NF125	60	10/5	
22	-	-	-	NV125-SW	75	25/13	-	-	-	NF125	75	10/5	
30	-	-	-	NV125-SW	100	25/13	-	-	-	NF125	100	10/5	
37	-	-	-	NV250-SW	125	25/13	-	-	-	NF250	125	18/9	
45	-	-	-	NV250-SW	150	25/13	-	-	-	NF250	150	18/9	
55	-	-	_	NV250-SW	175	25/13	-	-	-	NF250	175	18/9	
75	-	-	-	NV250-SW	225	25/13	-	-	-	NF250	225	18/9	
90	-	-	-	NV400-SW	250	42/42	-	-	-	NF400	250	25/13	
110	-	-	-	NV400-SW	300	42/42	-	-	-	NF400	300	25/13	
132	-	-	-	NV400-SW	350	42/42	-	-	-	NF400	350	25/13	
160	-	-	-	NV400-SW	400	42/42	-	-	-	NF400	400	25/13	
185	-	-	-	NV630-SW	500	42/42	-	-	-	NF630	500	36/18	
220	-	-	-	NV630-SW	630	42/42	-	-	-	NF630	630	36/18	
250	-	-	-	NV630-SW	630	42/42	-	-	-	NF630	630	36/18	
315	_	-	_	NV800-SEW	800	42/42	_	-	-	NF800	800	36/18	
355	-	-	_	NV800-SEW	800	42/42	_	-	-	NF800	800	36/18	
450	_	-	_	NV1000-SB	1000	85	_	-	-	NF1000	1000	85/43	
500	_	-	_	NV1200-SB	1200	85	_	-	-	NF1250	1250	85/43	
560	_	-	_	NS1600H*2	1600	70	_	_	-	NF1600	1600	85/43	
630	-	-	_	NS1600H*2	1600	70	-	-	-	NF1600	1600	85/43	

*1: Icu: Rated ultimate short-circuit breaking capacity Ics: Rated service short-circuit breaking capacity *2: NS series by Schneider Electric.

36 Note: 400 V models 22 kW and above come with a built-in DC reactor that improves the power factor. Base device selection on motor capacity.


Magnetic Contactor
[Fuji Electric FA Components & Systems Co., Ltd]

200 V Class

Motor Capacity	Without	Reactor	With F	leactor
(kW)	Model	Rated Current (A)	Model	Rated Current (A)
0.4	SC-03	11	SC-03	11
0.75	SC-05	13	SC-03	11
1.5	SC-4-0	18	SC-05	13
2.2	SC-N1	26	SC-4-0	18
3.7	SC-N2	35	SC-N1	26
5.5	SC-N2S	50	SC-N2	35
7.5	SC-N3	65	SC-N2S	50
11	SC-N4	80	SC-N4	80
15	SC-N5	93	SC-N4	80
18.5	SC-N5	93	SC-N5	93
22	-	-	SC-N6	125
30	-	-	SC-N7	152
37	—	_	SC-N8	180
45	-	-	SC-N10	220
55	_	_	SC-N11	300
75	_	_	SC-N12	400
90	_	_	SC-N12	400
110	-	-	SC-N14	600

Note: 200 V models 22 kW and above come with a built-in DC reactor that improves the power factor.

Wiring a Magnetic Contactor in Parallel

Note: When wiring contactors in parallel, make sure wiring lengths are the same to keep current flow even to the relay terminals.

400 V Class

400 V CIa Motor Capacity		Reactor	With F	leactor
(kW)	Model	Rated Current (A)	Model	Rated Current (A)
0.4	SC-03	7	SC-03	7
0.75	SC-03	7	SC-03	7
1.5	SC-05	9	SC-05	9
2.2	SC-4-0	13	SC-4-0	13
3.7	SC-4-1	17	SC-4-1	17
5.5	SC-N2	32	SC-N1	25
7.5	SC-N2S	48	SC-N2	32
11	SC-N2S	48	SC-N2S	48
15	SC-N3	65	SC-N2S	48
18.5	SC-N3	65	SC-N3	65
22	_	_	SC-N4	80
30	_	-	SC-N4	80
37	_	-	SC-N5	90
45	_	-	SC-N6	110
55	—	-	SC-N7	150
75	_	-	SC-N8	180
90	_	-	SC-N10	220
110	_	-	SC-N11	300
132	-	-	SC-N11	300
160	_	_	SC-N12	400
185	_	_	SC-N12	400
220	-	-	SC-N14	600
250	-	-	SC-N14	600
315	-	-	SC-N16	800
355	-	_	SC-N16	800
450	_	-	SC-N14×2*1	600*2
500	-	-	SC-N14×2*1	600*2
560	-	_	SC-N16×2*1	800*2
630	-	_	SC-N16×2*1	800*2

*1 : When two units are connected in parallel.

*2 : Rated current for a single unit.

Note: 400 V models 22 $k \vec{W}$ and above come with a built-in DC reactor that improves the power factor.

Surge Protector

Dimensions (mm)

0.8 dia.

Mounting hole specifications

2-4 dia. tead cable: 910 tead cable: 910 tead cable: 910 tead cable: 910

68

26

2-3 tapped

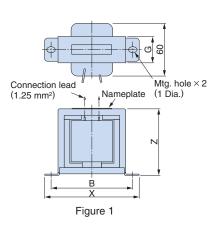
Weight: 22 g Weight: 5 g Model: DCR2-50A22E Model: DCR2-10A25C

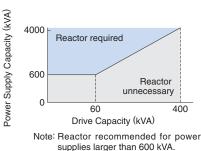
A22E Model: DCR2-10A25C M [Nippon Chemi-Con Corporation]

Weight: 150 g Model: RFN3AL504KD

Product Line

I TOGGOT EITIO					
Peripheral Devices	6	Surge Protector	Model	Specifications	Code No.
		Large-Capacity Coil (other than relay)	DCR2-50A22E	220 Vac 0.5 μ F+200 Ω	C002417
200 to 230 V	Control Relay	MY2, MY3 [Omron Corporation] MM2, MM4 [Omron Corporation] HH22, HH23 [Fuji Electric FA Components & Systems Co., Ltd]	DCR2-10A25C	250 Vac 0.1 μ F+100 Ω	C002482
		380 to 460 V	RFN3AL504KD	1000 Vdc 0.5 μ F+220 Ω	C002630




DC Reactor (UZDA-B for DC circuit)

Base device selection on motor capacity. Lead Wire Type

Dimensions (mm)

Nameplate

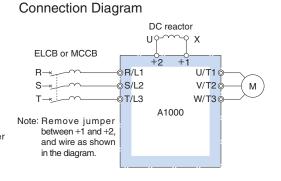
₽ X

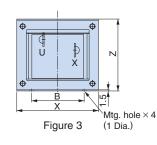
В

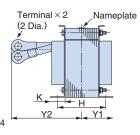
Х

Figure 2

+


Ŭ


Ferminal × 2 (2 Dia.)


5

Mtg. hole $\times 4$

(1 Dia.)

200 V Class

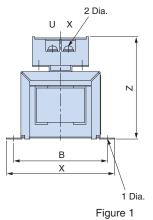
Motor									Dimer	nsions						Watt	Wire
Capacity	Current	Inductance	Code No.	Figure					(m	m)					Weight	Loss	Gauge*1
(kW)	(A)	(mH)			Х	Y2	Y1	Ζ	В	Н	K	G	1 Dia.	2 Dia.	(kg)	(W)	(mm ²)
0.4	5.4	8	X010048	1	85	-	-	53	74	-	-	32	M4	-	0.8	8	2
0.75	5.4	8	X010048	1	85	-	-	53	74	-	-	32	M4	-	0.8	8	2
1.5	18	3	X010049	2	86	80	36	76	60	55	18	-	M4	M5	2	18	5.5
2.2	18	3	X010049	2	86	80	36	76	60	55	18	-	M4	M5	2	18	5.5
3.7	18	3	X010049	2	86	80	36	76	60	55	18	-	M4	M5	2	18	5.5
5.5	36	1	X010050	2	105	90	46	93	64	80	26	-	M6	M6	3.2	22	8
7.5	36	1	X010050	2	105	90	46	93	64	80	26	-	M6	M6	3.2	22	8
11	72	0.5	X010051	2	105	105	56	93	64	100	26	-	M6	M8	4.9	29	30
15	72	0.5	X010051	2	105	105	56	93	64	100	26	-	M6	M8	4.9	29	30
18.5	90	0.4	X010176	2	133	120	52.5	117	86	80	25	-	M6	M8	6.5	45	30
22*2	105	0.3	300-028-140	3	133	120	52.5	117	86	80	25	-	M6	M10	8	55	50
22 to 110							В	uilt-in									

*1: Cable: Indoor PVC (75°C), ambient temperature 45°C, 3 lines max.

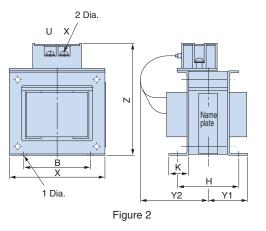
*2: Select a motor of this capacity when using a CIMR-AA2A0081.

400 V Class

Motor									Dimer	nsions						Watt	Wire
Capacity	Current	Inductance	Code No.	Figure					(m	m)					Weight	Loss	Gauge*1
(kW)	(A)	(mH)			Х	Y2	Y1	Z	В	Н	К	G	1 Dia.	2 Dia.	(kg)	(W)	(mm²)
0.4	3.2	28	X010052	1	85	-	-	53	74	-	-	32	M4	-	0.8	9	2
0.75	3.2	28	X010052	1	85	-	-	53	74	-	-	32	M4	-	0.8	9	2
1.5	5.7	11	X010053	1	90	-	-	60	80	-	-	32	M4	-	1	11	2
2.2	5.7	11	X010053	1	90	-	-	60	80	-	-	32	M4	-	1	11	2
3.7	12	6.3	X010054	2	86	80	36	76	60	55	18	-	M4	M5	2	16	2
5.5	23	3.6	X010055	2	105	90	46	93	64	80	26	-	M6	M5	3.2	27	5.5
7.5	23	3.6	X010055	2	105	90	46	93	64	80	26	-	M6	M5	3.2	27	5.5
11	33	1.9	X010056	2	105	95	51	93	64	90	26	-	M6	M6	4	26	8
15	33	1.9	X010056	2	105	95	51	93	64	90	26	-	M6	M6	4	26	8
18.5	47	1.3	X010177	2	115	125	57.5	100	72	90	25	-	M6	M6	6	42	14
22*2	56	1	300-028-141	3	133	105	52.5	117	86	80	25	-	M6	M6	7	50	22
22 to 630							В	uilt-in									


*1: Cable: Indoor PVC (75°C), ambient temperature 45°C, 3 lines max.

*2: Select a motor of this capacity when using a CIMR-AA4A0044.


Terminal Type

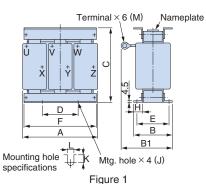
Dimensions (mm)

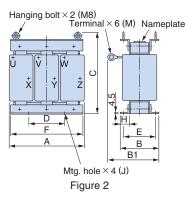
200 V Class

Motor Capacity	Current	Inductance	Code No.	Figure						nsions m)					Weight	Watt Loss
(kW)	(A)	(mH)			Х	Y2	Y1	Ζ	В	Н	K	G	1 Dia.	2 Dia.	(kg)	(W)
0.4 0.75	5.4	8	300-027-130	1	85	_	-	81	74	_	-	32	M4	M4	0.8	8
1.5 2.2 3.7	18	3	300-027-131		86	84	36	101	60	55	18	_	M4	M4	2	18
5.5 7.5	36	1	300-027-132	2	105	94	46	129	64	80	26	-	M6	M4	3.2	22
11 15	72	0.5	300-027-133		105	124	56	135	64	100	26	-	M6	M6	4.9	29
18.5	90	0.4	300-027-139	1	133	147.5	52.5	160	86	80	25	-	M6	M6	6.5	44

400 V Class

Motor Capacity	Current	Inductance	Code No.	Figure						nsions m)					Weight	Watt Loss
(kW)	(A)	(mH)			Х	Y2	Y1	Ζ	В	Н	K	G	1 Dia.	2 Dia.	(kg)	(W)
0.4 0.75	3.2	28	300-027-134	-	85	_	_	81	74	_	_	32	M4	M4	0.8	9
1.5 2.2	5.7	11	300-027-135		90	_	_	88	80	_	_	32	M4	M4	1	11
3.7	12	6.3	300-027-136		86	84	36	101	60	55	18	-	M4	M4	2	16
5.5 7.5	23	3.6	300-027-137	0	105	104	46	118	64	80	26	_	M6	M4	3.2	27
11 15	33	1.9	300-027-138	2	105	109	51	129	64	90	26	-	M6	M4	4	26
18.5	47	1.3	300-027-140	1	115	142.5	57.5	136	72	90	25	—	M6	M5	6	42


 $+ \times \times^*$


AC Reactor (UZBA-B for 50/60 Hz Input)

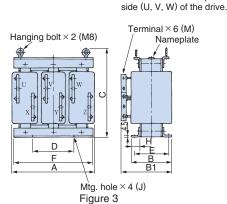
Base device selection on motor capacity. Lead Wire Type

Dimensions (mm)

Connection Diagram

V

W


Z^ĭJ ⊚T/L3

ELCB or MCCB

R

S

т

U/T1 @

V/T2@

W/T3¢

A1000

М

Note: When using low noise type drives (high-carrier frequency of 2.5 kHz or more), do not connect an

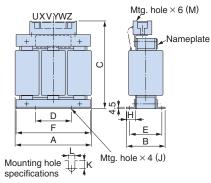
AC reactor to the output

200 V Class

Motor										Dimen	isions							Watt
Capacity	Current	Inductance	Code No.	Figure						(mi	m)						Weight	Loss
(kW)	(A)	(mH)			Α	В	B1	С	D	E	F	Н	J	K	L	Μ	(kg)	(W)
3.7	20	0.53	X002491			88	114			70				11.5		M5	3	35
5.5	30	0.35	X002492		130	00	119	105	50	70	130	22	M6	9	7	CIVI	3	45
7.5	40	0.265	X002493			98	139			80				11.5		M6	4	50
11	60	0.18	X002495]	160	105	147.5	130	75	85	160	25	M6	10	7	M6	6	65
15	80	0.13	X002497				155									M8		75
18.5	90	0.12	X002498] .	180	100	150	150	75	80	180	25	M6	10	7	IVIO	8	90
22	120	0.09	X002555] '			155									M10		90
30	160	0.07	X002556		210	100	170	175	75	80	205	25	M6	10	7	M10	12	100
37	200	0.05	X002557		210	115	183	175	75	95	205	20	1010	10	/	WITO	15	110
45	240	0.044	X002558		240	126	218	215±5	150	110	240	25	M6	8	7	M10	23	125
55	280	0.038	X002559]	240	120	210	215-5	150	110	240	25	M8	0	10	M12	23	130
75	360	0.026	X002560		270	162	241	230±5	150	130	260	40	M8	16	10	M12	32	145
90	500	0.02	X010145	2	330	162	286	315±5	150	130	320	40	M10	16	10	M12	55	200
110	500	0.02	X010145	2	000	102	200	01010	130	130	520	40		10	10	10112	55	200

400 V Class

Motor Capacity	Current	Inductance	Code No.	Figure						Dimen (m							Weight	Watt Loss
(kW)	(A)	(mH)	00001100.	riguie	A	В	B1	С	D	E	F	Н	J	K	L	М	(kg)	(W)
7.5	20	1.06	X002502		100	90	115	100	75	70	100	05		10	-		5	50
11	30	0.7	X002503		160	105	132.5	130	75	85	160	25	M6	10	7	M5	6	65
15	40	0.53	X002504				140										8	
18.5	50	0.42	X002505		180	100	145	150	75	80	180	25	M6	10	7	M6	0	90
22	60	0.36	X002506				150										8.5	
30	80	0.26	X002508		210	100	150	175	75	80	205	25	M6	10	7	M8	12	95
37	90	0.24	X002509	4	210	115	178	175	75	95	205	25	IVIO	10	/	IVIO	15	110
45	120	0.18	X002566	1	240	126	193	205±5	150	110	240	25	м8	8	10	M10	23	130
55	150	0.15	X002567		240	120	198	205-5	150	110	240	20	IVIO	0	10	IVITO	23	150
75	200	0.11	X002568		270	162	231	230±5	150	130	260	40	M8	16	10	M10	32	135
90	250	0.09	X002569		270	102	201	230±5	150	130	200	40	IVIO	10	10	WITO	32	155
110	250	0.09	X002569		270	162	231	230±5	150	130	260	40	M8	16	10	M10	32	135
132	330	0.06	X002570		320	165	253	230±5	150	130	320	40	M10	17.5	12	M12	55	200
160	330	0.06	X002570		520	105	200	200±0	150	150	520	40	WITO	17.5	12	IVIIZ		200
185	490	0.04	X002690															
220	490	0.04	X002690	2	330	176	293	315±5	150	150	320	40	M10	13	12	M12	60	340
250	490	0.04	X002690															
315	660	0.03	X002691	3	330	216	353	315±5	150	185	320	40	M10	15.5	18	M16	80	310
355	660	0.03	X002691	0	000	210	000	010±0	150	100	020	40	WITO	10.0	10	WITO	00	010
450	490*1	0.04	X002690×2*2	2	330	176	293	315±5	150	150	320	40	M10	13	12	M12	60	340
500	490*1	0.04	X002690×2*2	~	000		230	010±0	100	.50	020				12	10112		040
560	660*1	0.03	X002691×2*2	3	330	216	353	315±5	150	185	320	40	M10	15.5	18	M16	80	310
630	660*1	0.03	X002691×2*2	5	000	210	000	010±0	100	.00	020	40		10.0	10	10110	00	0.0


*1: Rated current for a single unit.

*2: When two units are connected in parallel.

Terminal Type

Dimensions (mm)

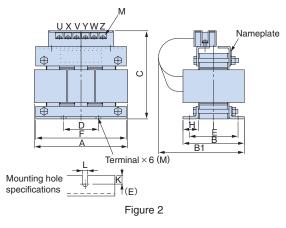
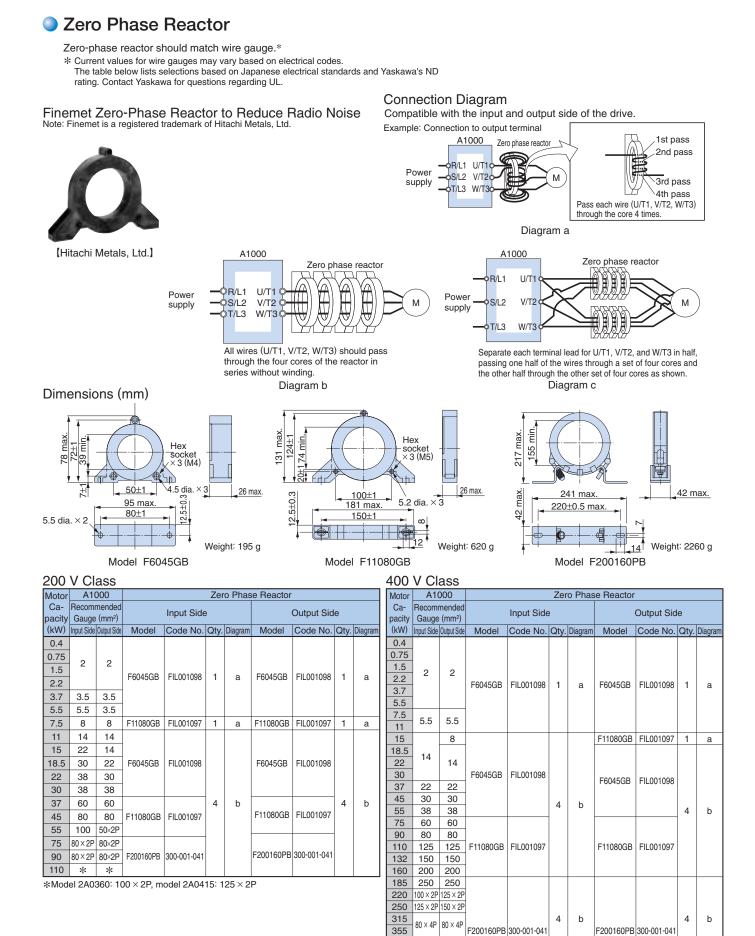


Figure 1


200 V C	lass																	
Motor										Dimen	isions							Watt
Capacity	Current	Inductance	Code No.	Figure						(mi	m)						Weight	Loss
(kW)	(A)	(mH)			Α	В	B1	С	D	E	F	Н	J	K	L	M	(kg)	(W)
0.4	2.5	4.2	X002553		120	71		120	40	50	105	20		10.5			2.5	15
0.75	5	2.1	X002554	1	120	/1		120	40	50	105	20		10.5	7		2.5	15
1.5	10	1.1	X002489] '	130	88		130	50	70	130	22		11.5	1	M4	3	25
2.2	15	0.71	X002490	1	130	00		130	50	70	130	22		11.5		1014	3	30
3.7	20	0.53	300-027-120		135	88	140	130	50	70	130	22	M6	—		1	3	35
5.5	30	0.35	300-027-121	1	135	00	150	130	50	70	130	22		9			3	45
7.5	40	0.265	300-027-122	2	135	98	160	140	50	80	130	22]	11.5	7	M5	4	50
11	60	0.18	300-027-123	2	165	105	185	170	75	85	160	25]	10	/	M6	6	65
15	80	0.13	300-027-124	1	185	100	180	195	75	80	180	25	1	10		M6	8	75
18.5	90	0.12	300-027-125	1	100	100	100	195	75	00	160	25		10		IVIO	0	90

400 V Class

Motor Capacity	Current	Inductance	Code No.	Figure						Dimen (mi							Weight	Watt Loss
(kW)	(A)	(mH)		J	Α	В	B1	С	D	E	F	Н	J	K	L	М	(kg)	(W)
0.4	1.3	18	X002561		120	71		120	40	50	105	20		10.5			2.5	15
0.75	2.5	8.4	X002562		120			120	40	50	105	20		10.5			2.5	15
1.5	5	4.2	X002563	4			_							9	7	M4		25
2.2	7.5	3.6	X002564		130	88	_	130	50	70	130	22		9	1	1014	3	25
3.7	10	2.2	X002500		130			130	50		130	22	M6	11.5				40
5.5	15	1.42	X002501			98				80			IVIO	11.5			4	50
7.5	20	1.06	300-027-126		165	90	160	155		70	160					M4	5	50
11	30	0.7	300-027-127	2	105	105	175	155	75	85	100	25		10	7	1014	6	65
15	40	0.53	300-027-128	2	185	100	170	185	/5	80	180	25		10	1	M5	8	90
18.5	50	0.42	300-027-129		100	100	170	105		00	100					CIVI	0	90

 $+ \times \times^{*}$

125 × 4P 125 × 4P

8

с

8

с

500 150 × 4P 150 × 4P 560 100 × 8P 100 × 8P

630 125 × 8P 125 × 8P

450

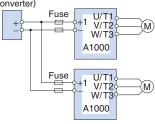
Fuse and Fuse Holder

Install a fuse to the drive input terminals to prevent damage in case a fault occurs. Refer to the instruction manual for information on UL-approved components.

[Fuji Electric FA Components & Systems Co., Ltd]

200 V Class

	AC	Power Supp	oly li	nput		DC	nput			
Model CIMR-AA2A		Fuse		Fuse Ho	older		Fuse		Fuse Ho	older
	Model	Rated Short- circuit Breaking Current (kA)	Qty.	Model	Qty.	Model	Rated Short- circuit Breaking Current (kA)	Qty.	Model	Qty.
0004										
0006	CR2LS-30					CR2LS-30				
8000										
0010	CB2LS-50		3	CM-1A	1	CB2LS-50		2	CM-1A	1
0012	UHZL3-30					UHZL3-30				
0018	CR2LS-75					CR2LS-75				
0021	CR2LS-100					CR2LS-100				
0030	CR2L-125					CR2L-125				
0040	CR2L-150		3	CM-2A	1	CR2L-150	50 100	2	CM-2A	1
0056	CR2L-175	100				CR2L-175	100			
0069	CR2L-225					CR2L-225				
0081	CR2L-260					CR2L-260				
0110	CR2L-300					CR2L-300				
0138	CR2L-350					CR2L-350				
0169	CR2L-400		3	*		CR2L-400		2	*	
0211	CR2L-450		3	· *		CR2L-450		2	*	
0250						CR2L-600				
0312	CR2L-600					UN2L-000				
0360						CS5F-800	200			
0415	CS5F-800	200				CS5F-1200	200			


* Manufacturer does not recommend a specific fuse holder for this fuse. Contact the manufacturer for information on fuse dimensions.

Capacitor-Type Noise Filter

Connection Diagram This example shows a DC power supply (two A1000 drives

connected in series). For an AC power supply, see the connection diagram on page 28.

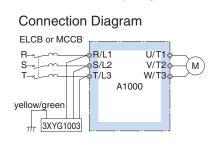
DC power supply (converter)

Note: When connecting multiple drives together, make sure that each drive has its own fuse. If any one fuse blows, all fuses should be replaced.

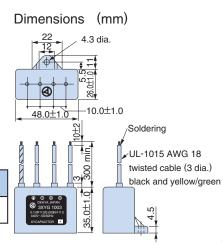
400 V Class

Madal	AC	Power Supp	oly I	nput		DC	Power Sup	Supply Input				
Model CIMR-AA4A		Fuse		Fuse Ho	older		Fuse		Fuse Ho	older		
	Model	Rated Short- circuit Breaking Current (kA)	Qty.	Model	Qty.	Model	Rated Short- circuit Breaking Current (kA)	Qty.	Model	Qty.		
0002	CR6L-20					CR6L-20						
0004	CR6L-30					CR6L-30						
0005			3	CMS-4	3			2	CMS-4	2		
0007	CR6L-50		3	0101334	3	CR6L-50		2	01010-4	2		
0009	0001-00					0001-00						
0011												
0018	CR6L-75					CR6L-75						
0023	UHOL-/5					UHOL-/5						
0031	CR6L-100	100	3	CMS-5	3	CR6L-100	100	2	CMS-5	2		
0038						CR6L-150						
0044	CR6L-150											
0058	CR6L-200					CR6L-200						
0072	CR6L-250					CR6L-250						
0088	0001-200					UN01-200						
0103	CR6L-300					CR6L-300						
0139	CR6L-350					CR6L-350						
0165	CR6L-400					CR6L-400						
0208												
0250	CS5F-600		3	*		CS5F-600		2	*			
0296												
0362						CS5F-800						
0414	CS5F-800	200				0201-000	200					
0515						CS5F-1200						
0675	CS5F-1000					CS5F-1500						
0930	CS5F-1200					CS5F-1200	1					
1200	CS5F-1500	1				CS5F-1500						

Note: Always install input fuses for models CIMR-AA4A0930 and CIMR-AA4A1200.


Capacitor-type noise filter exclusively designed for drive input. The noise filter can be used in combination with a zero-phase reactor. For both 200 V and 400 V classes.

Note: The capacitor-type noise filter can be used for drive input only. Do not connect the noise filter to the output terminals.


[Okaya Electric Industries Co., Ltd.]

Code No.
C002889

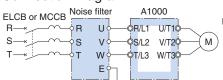
Specifica	ations	
Rated	Capacitance	Operating
Voltage	(3 devices each)	Temperature (°C)
440 V	X (Δ connection) : 0.1 μ F ± 20 %	- 40 to +85
440 V	Y (\land connection) : 0.003 μ F ± 20 %	- 40 10 +65

Note: For use with 460 V and 480 V units, contact Yaskawa directly.

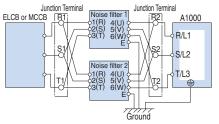
Input Noise Filter

Base device selection on motor capacity.

Noise Filter without Case


Noise Filter with Case

Noise Filter [Schaffner EMC K.K.]


Note: Refer to the instruction manual for information on the CE mark and compliance with the EMC directive.

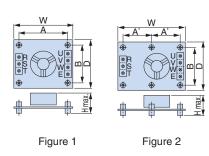
Connection Diagram

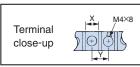
Note: Do not connect the input noise filter to the drive output terminals (U, V, W). Connect in parallel when using two filters.

Connecting Noise Filters in Parallel to the Input or Output Side (examples shows two filters in parallel)

Note: When wiring contactors in parallel, make sure wiring lengths are the same to keep current flow even to the relay terminals.

Noise filters and grounding wire should be as heavy and as short as possible.

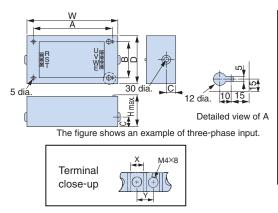

200 V Class


Motor	Noise	Filter without	Case		Nois	se Filter with C	ase		Noise Filte	r by Schaffner	EMC K.	K.
Capacity (kW)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)
0.4 0.75 1.5	LNFD-2103DY	FIL000132	1	10	LNFD-2103HY	FIL000140	1	10	_	_	_	_
2.2	LNFD-2153DY	FIL000133	1	15	LNFD-2153HY	FIL000141	1	15	-	-	—	-
3.7	LNFD-2303DY	FIL000135	1	30	LNFD-2303HY	FIL000143	1	30	-	—	-	-
5.5	LNFD-2203DY	FIL000134	2	40	LNFD-2203HY	FIL000142	2	40	FN258L-42-07	FIL001065	1	42
7.5			2	60			2	60	FN258L-55-07	FIL001066	1	55
11			3	90			3	90	FN258L-75-34	FIL001067	1	75
15 18.5	LNFD-2303DY	FIL000135	4	120	LNFD-2303HY	FIL000143	4	120	FN258L-100-35	FIL001068	1	100
22			4	120			4	120	FN258L-130-35	FIL001069	1	130
30									FN258L-130-35	FIL001069	1	130
37 45									FN258L-180-07	FIL001070	1	180
55	-	-	-	-	-	-	-	-	FN359P-250-99	FIL001071	1	250
75									FN359P-400-99	FIL001073	1	400
90									FN359P-500-99	FIL001074	1	500
110									FN359P-600-99	FIL001075	1	600

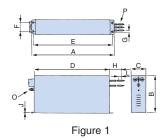
Motor	Noise	Filter without	Case		Noi	se Filter with C	ase		Noise Filte	r by Schaffner	EMC K	.K.
Capacity (kW)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)
0.4 0.75	LNFD-4053DY	FIL000144	1	5	LNFD-4053HY	FIL000149	1	5				
1.5 2.2	LNFD-4103DY	FIL000145	1	10	LNFD-4103HY	FIL000150	1	10	-	_	_	_
3.7	LNFD-4153DY	FIL000146	1	15	LNFD-4153HY	FIL000151	1	15				
5.5	LNFD-4203DY	FIL000147	1	20	LNFD-4203HY	FIL000152	1	20				
7.5	LNFD-4303DY	FIL000148	1	30	LNFD-4303HY	FIL000153	1	30				
11	LNFD-4203DY	FIL000147	2	40	LNFD-4203HY	FIL000152	2	40	FN258L-42-07	FIL001065	1	42
15 18.5			2	60			2	60	FN258L-55-07	FIL001066	1	55
22 30	LNFD-4303DY	FIL000148	3	90	LNFD-4303HY	FIL000153	3	90	FN258L-75-34	FIL001067	1	75
37									FN258L-100-35	FIL001068	1	100
45			4	120			4	120	FN258L-100-35	FIL001068	1	100
55									FN258L-130-35	FIL001069	1	130
75 90									FN258L-180-07	FIL001070	1	180
110	_	_	-	_	_	_	_	-	FN359P-300-99	FIL001072	1	300
132 160									FN359P-400-99	FIL001073	1	400
185									FN359P-500-99	FIL001074	1	500
220												
250									FN359P-600-99	FIL001075	1	600
315 355	_	—	-	_	_	_	_	_	FN359P-900-99	FIL001076	1	900
450 500									FN359P-600-99	FIL001075	2	1200
560 630	_	_	_	_	_	_	_	_	FN359P-900-99	FIL001076	2	1800

Without Case

Dimensions (mm)



Model	Code No.	Figure		l	Dimer	nsions	(mm))		(mm) Screw		Mounting Screw	Weight (kg)
			W	D	Н	А	Α'	В	М	Х	Y		
2103DY	FIL000132	1	120	80	55	108	-	68	20	9	11	M4 × 4.20 mm	0.2
2153DY	FIL000133	1	120			100	68	00	20	9	11	1014 ^ 4,20 11111	0.2
2203DY	FIL000134	1	170	90	70	158	78	78	20	9	11	$M4 \times 4,20 \text{ mm}$	0.4
2303DY	FIL000135	2	170 110		10	-	79	98	20	10	13	M4×6,20 mm	0.5
4053DY	FIL000144	2			75				30				0.3
4103DY	FIL000145	2	170	130	95	-	79	118		9	11	M4×6,30 mm	0.4
4153DY	FIL000146	2			95								0.4
4203DY	FIL000147	2	000	0 145	100		94	133	30	9	11	M4 × 4.30 mm	0.5
4303DY	FIL000148	2	200	200 145	100		94	133	30	10	13	M4 ^ 4,30 mm	0.6


With Case

Dimensions (mm)

Model	Code No.		Di	mensio	ons (mi	m)			ninal m)	Weight (kg)
		W	D	н	Α	В	С	Х	Y	
2103HY	FIL000140	185	95	85	155	65	33	9	11	0.9
2153HY	FIL000141	105	95	00	155	05	33	9	11	0.9
2203HY	FIL000142	240	125	100	210	95	33	9	11	1.5
2303HY	FIL000143	240	125	100	210	95	33	10	13	1.6
4053HY	FIL000149					110				1.6
4103HY	FIL000150	235	140	120	205		43	9	11	1.7
4153HY	FIL000151									1.7
4203HY	FIL000152	270	155	125	240	125	43	9	11	2.2
4303HY	FIL000153	270	100	125	240	125	43	10	13	2.2

Manufactured by Schaffner EMC K.K.

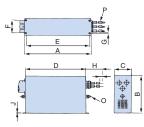
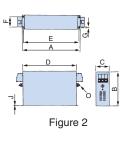
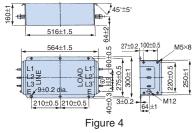
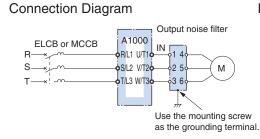




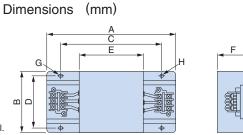
Figure 3

Dimensions (mm)

Model	Weight (kg)
FN359P-250-99	16
FN359P-300-99	16
FN359P-400-99	18.5
FN359P-500-99	19.5
FN359P-600-99	20.5
FN359P-900-99	33

Model	Figure					Din	nensions (r	nm)					Wire Gauge	Weight
woder	Figure	А	В	С	D	Е	F	G	Н	J	L	0	Р	(kg)
FN258L-42-07			185 ± 1	70			45		500		12		AWG8	2.8
FN258L-55-07	1	329	105 ± 1	00	300	314	55	6.5	500	1.5	12	M6	AWG6	3.1
FN258L-75-34]		220	80			55		-	1	-		-	4
FN258L-100-35	2	379±1.5	220	90±0.8	350±1.2	364	65		_	1.5	_			5.5
FN258L-130-35	2	439±1.5	240	110±0.8	400±1.2	414	80	6.5		3		M10		7.5
FN-258L-180-07	3	438±1.5	240	110±0.0	400±1.2	413	00		500	4	15		50 mm ²	11
FN359P-	4						Described	in Eiguro /						Shown in the
	4			Described in Figure 4										above table.


 $+ \times \times$



Output Noise Filter

Base device selection on motor capacity.

[NEC Tokin Corporation]

200 V Class

Motor Capacity	Model	Code No.	Qty.*1	Rated Current		-		(ensions mm)	_			Terminal	Weight*2
(kW)				(A)	A	В	С	D	E	F	G	H		(kg)
0.4	LF-310KA	FIL000068	1	10	140	100	100	90	70	45	7×ø4.5	<i>φ</i> 4.5	TE-K5.5 M4	0.5
1.5	2. 0.0.01											φσ		0.0
2.2 3.7	LF-320KA	FIL000069	1	20	140	100	100	90	70	45	7× <i>φ</i> 4.5	<i>φ</i> 4.5	TE-K5.5 M4	0.6
5.5														
7.5			1	50										
11	LF-350KA	FIL000070			260	180	180	160	120	65	7× <i>ϕ</i> 4.5	φ4.5	TE-K22 M6	2.0
15			2	100										
18.5														
22	LF-350KA*3	FIL000070	3	150	260	180	180	160	120	65	$7 \times \phi 4.5$	<i>φ</i> 4.5	TE-K22 M6	2.0
22	LF-3110KB*3	FIL000076	1	110	540	340	480	300	340	240	9×¢6.5	<i>\$</i> 6.5	TE-K60 M8	19.5
00	LF-350KA*3	FIL000070	3	150	260	180	180	160	120	65	$7 \times \phi 4.5$	<i>\$</i> 4.5	TE-K22 M6	2.0
30	LF-375KB*3	FIL000075	2	150	540	320	480	300	340	240	9×¢6.5	<i>\$</i> 6.5	TE-K22 M6	12.0
37														
45	LF-3110KB	FIL000076	2	220	540	340	480	300	340	240	9×¢6.5	φ6.5	TE-K60 M8	19.5
55														
75			3	330										
90	LF-3110KB	FIL000076	4	440	540	340	480	300	340	240	9×¢6.5	<i>φ</i> 6.5	TE-K60 M8	19.5
110			5	550										

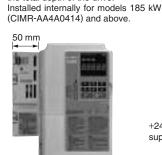
*1: Connect in parallel when using more than one filter.

*2: Weight of one filter.

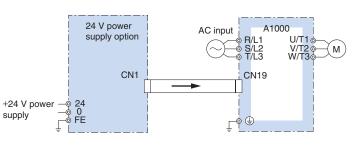
*3: Either noise filter model can be used.

400 V Class

Motor Capacity	Model	Code No.	Qty.*1	Rated Current					ensions nm)				Terminal	Weight*2
(kW)			-	(A)	А	В	С	D	E	F	G	Н		(kg)
0.4														
0.75														
1.5	LF-310KB	FIL000071	1	10	140	100	100	90	70	45	$7 \times \phi 4.5$	φ4.5	TE-K5.5 M4	0.5
2.2														
3.7														
5.5	LF-320KB	FIL000072		20										0.6
7.5			1		140	100	100	90	70	45	7× <i>ϕ</i> 4.5	<i>φ</i> 4.5	TE-K5.5 M4	
11 15	LF-335KB	FIL000073		35							,	<i>.</i>		0.8
18.5	LF-345KB	FIL000074	1	45	260	180	180	160	120	65	7× <i>ϕ</i> 4.5	Ø4.5	TE-K22 M6	2.0
22	LF-343KD	FIL000074	1	40	200	100	160	160	120	05	7×ψ4.5	ψ4.5		2.0
30	LF-375KB	FIL000075	1	75	540	320	480	300	340	240	9×¢6.5	<i>¢</i> 6.5	TE-K22 M6	12.0
37			1	110	E 40	040	400	200	240	040	0.405	40.5		10.5
45	LF-3110KB	FIL000076	I	110	540	340	480	300	340	240	9× <i>ϕ</i> 6.5	<i>¢</i> 6.5	TE-K60 M8	19.5
55	LF-375KB	FIL000075	2	150	540	320	480	300	340	240	9×ø6.5	<i>\phi</i> 6.5	TE-K22 M6	12.0
75			2	220										
90														
110			3	330										
132														
160			4	440										
185			_											
220 250	LF-3110KB	FIL000076	5	550 660	540	340	480	300	340	240	9× <i>ø</i> 6.5	<i>φ</i> 6.5	TE-K60 M8	19.5
315			6 7	660 770										
355			8	880										
450			9	990										
500			10	1100										
560			11	1210										
630			12	1320										

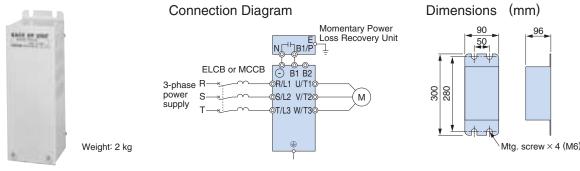

*1: Connect in parallel when using more than one filter.*2: Weight of one filter.

46


24 V Power Supply

The 24 V Power Supply Option maintains drive control circuit power in the event of a main power outage. The control circuit keeps the network communications and I/O data operational in the event of a power outage. It supplies external power to the control circuit only.

Note: Even if a back-up power supply is used for the control circuit, the main circuit must still have power in order to change parameter settings. **Connection Diagram**


The installed option adds 50 mm to the total depth of the drive.

Weight: 0.2 kg

Model	Code No.
200 V Class: PS-A10L	PS-A10L
400 V Class: PS-A10H	PS-A10H

Momentary Power Loss Recovery Unit

Model	Code No.
200 V Class: P0010	P0010
400 V Class: P0020	P0020

Note: Functions as a back-up power supply for drives up to 11 kW. Allows the drive to ride through a power loss up to 2 s long. The drive alone can continue running through a power loss lasting 0.1 s to 1.0 s. Results may vary with drive capacity.

Mtg. screw × 4 (M6)

Peripheral Devices and Options (continued)

Braking Unit, Braking Resistor, Braking Resistor Unit

Braking units come standard with 200 V and 400 V class drives 0.4 to 30 kW. If the application requires a braking resistor or braking unit, choose from built-in and stand-alone types in accordance with motor capacity.

Stand-alone

Stand-alone

Braking Unit [CDBR series]

Braking Resistor [ERF-150WJ series]

Braking Resistor with Fuse [CF120-B579 series]

Braking Resistor Unit [LKEB series]

200 V Class

Max.		A1000	Braking Unit			<u> </u>		Duty Fa	ictor: 3% ED, 10 s max.)*1					Braking Resistor Unit (Duty Factor: 10% ED, 10 s max.)*1				Min.*2	
Applicable Motor (kVV)	ND/HD	Model CIMR-AA2A	Model CDBR- Qty.	Model ERF-150WJ	No F Resistance (Ω)		Diagram	Braking Torque ^{*3} (%)	Model CF120-B579	With Resistance (\Omega)		e Diagram	Braking Torque*3 (%)	Model LKEB-	Resistor Specifications (per unit)	Qty.	Diagram	Braking Torque ^{*3} (%)	Connectable Resistance (Ω)
0.4	HD	0004		201	200	1	A	220	В	200	1	Α	220	20P7	70 W 200 Ω	1	В	220	48
0.75	ND HD	0004 0006		201	200	1	А	125	В	200	1	А	125	20P7	70 W 200 Ω	1	в	125	48
1.1	ND	0006		201	200	1	A	85	В	200	1	A	85	20P7	70 W 200 Ω	1	в	85	48
1.1	HD	0008		101	100	'	~	150	С	100	1	~	150	21P5	260 W 100 Ω	'	В	150	40
1.5	ND HD	0008 0010		101	100	1	A	125	С	100	1	А	125	21P5	260 W 100 Ω	1	В	125	48
2.2	ND HD	0010		700	70	1	A	120	D	70	1	А	120	22P2	260 W 70 Ω	1	в	120	48 16
3	ND HD	0012 0018		620	62	1	A	100	E	62	1	A	100	22P2	390 W 40 Ω	1	в	150	16
3.7	ND HD	0018 0021		620	62	1	A	80	E	62	1	А	80	23P7	390 W 40 Ω	1	в	125	16
5.5	ND HD	0021	Built-in	in 620 62			Α	110	E 62 2 A 110					25P5	520 W 30 Ω	1	в	115	16
7.5	ND HD	0030		-					_						780 W 20 Ω	1	в	125	16 9.6
11	ND HD	0040								-				2011	2400 W 13.6 Ω	1	в	125	9.6
15	ND HD	0056			_									2015	3000 W 10 Ω	1	в	125	9.6
18.5	ND HD	0069			-	-				-				2015	3000 W 10 Ω	1	в	100	9.6
22	ND HD	0081			-	-				_				2015 2022	3000 W 10 Ω	1	в	85 125	9.6 6.4
30	ND	0110			-	-			_				2022	4800W 6.8 Ω 4800 W 6.8 Ω	1	в	90	6.4	
37	HD ND	0138	00455	_	_	-				_	-			2022	4800 W 6.8 Ω	1	В	70	6.4
45	HD ND	0169 0169	2015B 2 2015B 2	_	-	-				-	-			2015 2015	3000 W 10 Ω 3000 W 10 Ω	2	D	100 80	9.6 9.6
55	HD ND	0211 0211	2022B 2 2022B 2		_	_				_	_			2022	4800 W 6.8 Ω 4800 W 6.8 Ω		D	120 100	6.4 6.4
	HD ND	0250 0250			_					_									
75	HD ND	0312 0312			_					_				2022	4800 W 6.8 Ω		E	110	1.6
90	HD	0360	2110B 1		-	-				-	-			2022	4800 W 6.8 Ω	4	E	120	1.6
110	ND HD	0415 0415	2110B 1		-	-				-	-			2018	4800 W 8 Ω	5	E	100	1.6

*1 : Refers to a motor coasting to stop with a constant torque load. Constant output and regenerative braking will reduce the duty factor.
 *2 : Assumes the use of a single braking unit. The braking unit should have a resistance higher than the minimum connectable resistance value and be able to generate enough braking torque to stop the motor.

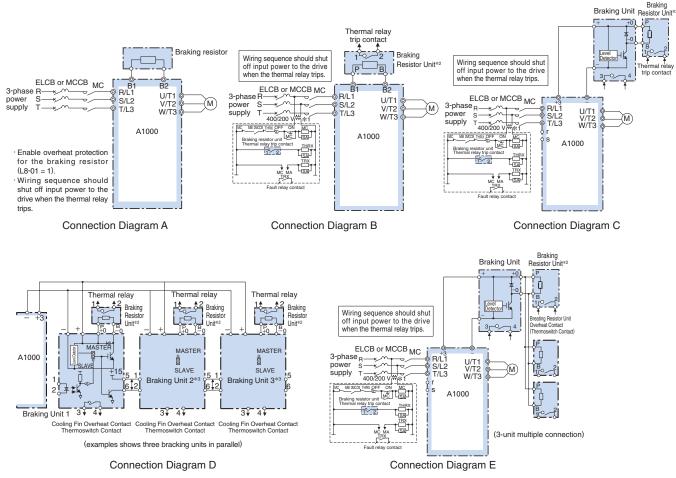
*3 Applications with a relatively large amount of regenerative power (elevators, hoists, etc.) may require more braking power than is possible with only the standard braking unit and braking resistor. Contact Yaskawa for information if braking torque exceeds the value shown.

Note: 1. Braking resistor (ERF-150WJ and CF120-B579) requires a separate attachment for installation. See attachment for braking resistor unit on page 51. 2. If the built-in fuse on a braking resistor blows, then the entire braking resistor should be replaced.

3. See the connection diagram on page 50.

400 V Class

							_					_					_			
Max.		A1000	Braking	Unit					Duty Fa	ctor: 3% ED, 10 s max.)*1					Braking Resistor Unit (Duty Factor: 10% ED, 10 s max.)*1				Min.*2	
Applicable					No Fuse			With Fuse									Connectable			
Motor	ND/HD		Model		Model	Resistance	.		Braking	Model	Resistance			Braking	Model	Resistor			Braking	Resistance
(kW)		CIMR-AA4A	111111111	Qty.	ERF-150WJ	(Ω)	Qty.	Diagram	Torque ^{*3} (%)	CF120-B579	(Ω)	Qty.	Diagram	Torque ^{*3} (%)	LKEB-	Specifications (per unit)	Qty.	Diagram	Torque ^{*3} (%)	(Ω)
0.4	ЦП	0002	::			750	4	۸		:.: F	750	4	•		4007	•	4	D		06
0.4	HD ND	0002			751	750	1	A	230	Г	750	1	A	230	40P7	70 W 750 Ω	1	В	230	96
0.75	HD	0002			751	750	1	А	130	F	750	1	A	130	40P7	70 W 750 Ω	1	В	130	96
	ND	0004																		96
1.5	HD	0005			401	400	1	A	125	G	400	1	A	125	41P5	260 W 400 Ω	1	В	125	64
2.2	ND	0005			301	300	1	۸	115	ц	200	4		115	42P2	000 144 050 0	4	Б	135	64
2.2	HD	0007			301	300	'	A	115	Н	300	1	A	115	4252	260 W 250 Ω	1	В	135	04
3	ND	0007			201	200	1	А	125	J	250	1	A	100	42P2	260 W 250 Ω	1	в	100	64
	HD	0009			201	200		~	120		200	•	~	100	43P7	390 W 150 Ω			150	32
3.7	ND	0009			201	200	1	А	105	J	250	1	A	83	43P7	390W 150 Ω	1	в	135	32
	HD	0011			001	000	0	•	105	-	050	0		105						
5.5	ND HD	0011 0018			201	200	2	A	135	J	250	2	A	105	45P5	520 W 100 Ω	1	В	135	32
	ND	0018	Built-	in			-					-								
7.5	HD	0023				-					-	-			47P5	780 W 75 Ω	1	В	130	32
	ND	0023																_		32
11	HD	0031				-					-	-			4011	1040 W 50 Ω	1	В	135	20
15	ND	0031													4015	1500.04 40.0	4	Б	125	20
15	HD	0038													4015	1560 W 40 Ω	1	В	125	20
18.5	ND	0038				_					_	-			4018	4800 W 32 Ω	1	в	125	20
	HD	0044														10000 11 02				19.2
22	ND	0044				_					_	-			4022	4800 W 27.2 Ω	1	в	125	19.2
	HD	0058																		
30	ND HD	0058 0072			_				-				4030	$6000 \text{ W} 20 \Omega$	1	В	125	19.2		
	ND	0072									4030	6000 W 20 Ω		В	100	19.2				
37	HD	0088	4045B	1		-				-				4037	9600 W 16 Ω	1	C	125	12.8	
45	ND	0088	40.455														0			
45	HD	0103	4045B	1		_				_				4045	9600 W 13.6 Ω	1	С	125	12.8	
55	ND	0103	4045B	1		_				_				4045	9600 W 13.6 Ω	1	С	100	12.8	
00	HD	0139	4030B	2										4030	6000 W 20 Ω	2	D	135	19.2	
75	ND	0139	4030B	2		-				_				4030	6000 W 20 Ω	2	D	100	19.2	
	HD	0165	4045B											4045	9600W 13.6 Ω			145	12.8	
90	ND HD	0165 0208	4045B	2		-					-	-			4045	9600W 13.6 Ω	2	D	100	12.8
	ND	0208																		
110	HD	0250	4220B	1		-	-				-	-			4030	6000 W 20 Ω	3	E	100	3.2
100	ND	0250																_		
132	HD	0296	4220B	1		-					-	-			4045	9600W 13.6 Ω	4	E	140	3.2
160	ND	0296	4220B	1		_					_	_			4045	06001/ 12.6.0	1	E	140	3.2
100	HD	0362	-12200	L'											4040	9600W 13.6 Ω	+		140	0.2
185	ND	0362	4220B	1	_			_	-			4045	9600W 13.6 Ω	4	E	120	3.2			
	HD	0414																		
220	ND HD	0414	4220B	1	-		-				4037	9600 W 16 Ω	5	E	110	3.2				
250	ND	0515 0515	4220B	1	_			_			4037	9600 W 16 Ω	5	E	90	3.2				
315	HD	0675	4220B	-		_					_					9600 W 10 Ω		E	100	3.2
355	ND	0675	4220B		_								9600 W 13.6 Ω	-	E	120	3.2			
450	HD	0930	4220B			-								4037	9600 W 16 Ω		E	100	3.2	
500	ND	0930	4220B	2		-				-				4037	9600 W 16 Ω	10	E	90	3.2	
560	HD	1200	4220B	3		-					_	-			4037	9600 W 16 Ω	15	E	120	3.2
630	ND	1200	4220B	3		-					-	-			4037	9600 W 16 Ω	15	E	100	3.2


*1: Refers to a motor coasting to stop with a constant torque load. Constant output and regenerative braking will reduce the duty factor.
*2: Assumes the use of a single braking unit. The braking unit should have a resistance higher than the minimum connectable resistance value and be able to generate enough braking torque to stop the motor.
*3: Applications with a relatively large amount of regenerative power (elevators, hoists, etc.) may require more braking power than is possible with only the standard braking resistor. Contact Yaskawa for information if braking torque exceeds the value shown.
Note: 1. Braking resistor (ERF-150WJ and CF120-B579) requires a separate attachment for installation. See attachment for braking resistor unit on page 51.
2. If the built in fuse on a braking resistor unit on page 51.

2. If the built-in fuse on a braking resistor blows, then the entire braking resistor should be replaced.

3. See the connection diagram on page 50.

Peripheral Devices and Options (continued)

Connection Diagram

*1: 200 V class drives do not require a control circuit transformer.

*2: Disable Stall Prevention during deceleration by setting L3-04 to 0 or 3 when using a Braking Resistor Unit.

The motor may not stop within the deceleration time if this setting is not changed.

*3: When using more than one braking unit connected in parallel, set one of the braking units to be the master, and the others to be slaves. Note: When connecting a separately-installed type braking resistor unit (model CDBR) to drives with a built-in braking transistor (200 V/400 V 30 kW or less), connect the B1 terminal of the drive to the positive terminal of the braking resistor unit and connect the negative terminal of the drive to the negative terminal of the braking resistor unit. The B2 terminal is not used in this case.

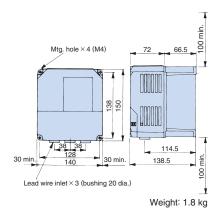
> Up ☆

140

Main circuit

terminal M6

⁸ 100


30 min

59 50

30 mir

Dimensions (mm) Braking Unit

Model: CDBR-2015B , -2022B, -4030B, -4045B

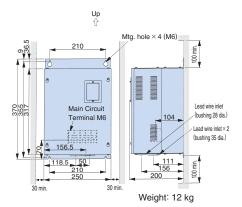
Mtg. hole × 4 (M6)

104

156

Weight: 8.5 kg

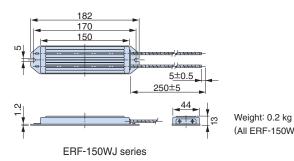
200

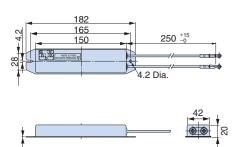

100 min.

100

Lead wire inlet

(bushing 28 dia.)


Lead wire inlet × 2 (bushing 35 dia.) Model: CDBR-4220B



Model	Heat Loss
CDBR-	(W)
2015B	32
2022B	38
2110B	64
4030B	54
4045B	59
4220B	71


Braking Resistor

A separate attachment is need. Contact Yaskawa for details. The following attachment can be used to install to the drive.

Weight: 0.256 kg

Ņ

(All ERF-150WJ Series models)

Braking Resistor Unit (stand-alone)

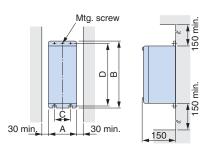
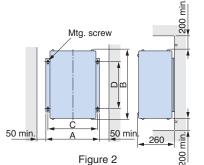



Figure 1

Applicable	Applicable Braking Resistor Voltage Unit Model Class LKEB-::::::::::::::::::::::::::::::::::::			Dime	ensio	ns (m	m)	Mainha	Allowable Average
Ŭ			A	В	С	D	MTG Screw	Weight (kg)	Power Consumption (VV)
	20P7	1	105	275	50	260	M5×3	3.0	30
	21P5					335 335	M5×4 M6×4	4.5	60
	22P2	1	130	350				4.5	89
	23P7							5.0	150
200 V	25P5	1	250	350				7.5	220
Class	27P5		250	350				8.5	300
	2011		266		246			10	440
	2015	2	356	543	336	340	M8×4	15	600
	2018	2	446	043	426	340		19	740
	2022		440		420			19	880

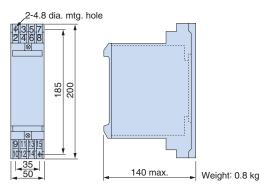
			90				N.		
Applicable	Braking Resistor			Dime	ensio		Allowable Average		
Voltage Class	Unit Model	Figure	A	В	С	D	MTG Screw	Weight (kg)	Power Consumption (VV)
	40P7	1	105	275	50	260	M5×3	3.0	30
	41P5							4.5	60
	42P2	1	130	350	75	335	M5×4	4.5	89
	43P7							5.0	150
	45P5	1	250	350	200	335	M6×4	7.5	220
400.14	47P5							8.5	300
400 V Class	4011	2	050	412	330	325	M6×4	16	440
01033	4015	2	350	412	330			18	600
	4018	2	446	543	426	340	M8×4	19	740
	4022	2	440	543	420	340	IVI8×4	19	880
	4030		356		336			25	1200
	4037	2	446	956	426	740	M8×4	33	1500
	4045		440		420			33	1800

Attachment for Braking Resistor

Model	Code No.
EZZ020805A	100-048-123

VS System Module (Power Supply Capacity 6 VA or less)

Name (Model)	Exterior	Function
Soft Starter A (JGSM-01) Soft Starter B (JGSM-02)		Provides smooth changes in speed during start, stop, and when sudden changes in the speed reference would otherwise impact the load. Independent accel/decel settings, an output signal during speed changes, and fast stopping features are included. Capable of detecting zero speed and motor direction. Acceleration and deceleration time setting ranges: Soft Starter A: 1.5 to 30 s Soft Starter B: 5 to 90 s
Ratio Setter A (JGSM-03)		Converts the current signal 4 to 20 mA of master setter JVOP-03*1 to a voltage signal. Sets five types of ratios and biases.
Ratio Setter B (JGSM-04)		Converts the frequency signal 0 to 2 kHz of master setter JVOP-04*1 to a voltage signal. Sets five types of ratios and biases.
Ratio Setter C (JGSM-17)		Converts a 200 Vac signal, a 30 Vac tachgenerator signal, or a 10 Vdc signal to DC for use as the speed reference. Allows the user to set up to five ratios and biases.
Follower Ratio Setter (JGSM-05)		Converts a frequency signal from a tachgenerator for voltage input. Allows the user to set up to five ratios and biases.
Position Controller (JGSM-06)		Converts a self-synchronizing signal from YVGC-500W*1, then converts that signal to DC voltage proportional to the rotational angle. Equipped with a signal mixing function to minimize deviation from the reference signal.
PID Controller (JGSM-07)		Independently sets ratio gain, integral, and differential time for the simple process control. Integral reset, stepless operation, and wind-up functions are available.
Preamplifier (JGSM-09-□□)*2		Amplifies both the power of DC input signal and output of snap-in function mod- ules JZSP-11 to 16*1.
UP/DOWN Setter (JGSM-10B)	1000	Executes "UP" or "DOWN" command from remote control type VS operator model JVOP-10*1 by lowering or raising reference voltage.
Operational Amplifier (JGSM-12-□□)*3		Required operational circuits are provided through a range of operational impedanc- es.
Signal Selector A (JGSM-13)		Consists of power supply circuit and two relay circuits. Used as a selector circuit of control signals.


Name (Model)	Appearance	Function
Signal Selector B (JGSM-14)		Contains three relay circuits to switch between control signals. Must be using in combination with JGSM-13, which supplies power.
Comparator (JGSM-15-		Detects signal levels for DC voltage, current, AC tachogenerator, or frequency reference and compares them with two preset levels. The snap-in module*1 is used to drive relays and output contact signals.
V/I Converter (JGSM-16-□□)*²		Converts DC voltage into a 4 to 20 mA current signal for use with other monitoring devices. A snap-in module ^{*1} can also be added to monitor frequency or provide feedback for a tachogenerator.
D/A Converter (JGSM-18) (JGSM-19)		Converts BCD 3-digit or 12-bit binary digital signals to analog signals of -10 to +10 V with high accuracy. Model JGSM-18: For BCD 3-digit input signals Model JGSM-19: For 12-bit binary signals
Static Potentiometer (JGSM-21 D/A Converter) (JGSM-22 Controller)		Static potentiometer can be used in combination with remote setting device JGSM- 10B for the following applications: • Maintain reference values despite power loss • Set deceleration times externally • Operate as a soft-starter for an analog signal JGSM-21 and JGSM-22 must be used in combination with one another.

*1: Offered as a standard Yaskawa product.

*2: □□ shows model number of VS snap-in function modules. Refer to the VS Snap-in Module list for more information.

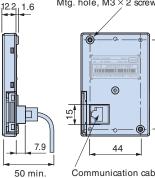
A3: □ indicates impedance class.
 Note: Both 200 V/220 V at 50 Hz/60 Hz are available as standard models. Use a transformer for other power supplies with a capacity of 6 VA or less.

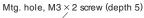
VS System Module Dimensions (mm)

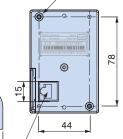
VS Snap-in Module List

Application	Name	Model
Short-circuit of mounting connector of VS snap-in module	Short-circuit PC board	JZSP-00
Buffer accel/decel operation	Soft starter	JZSP-12
Operation with a process controller or VS operator JVOP-03	I/V converter	JZSP-13
Control using digital operator JVOP-04	f/V converter	JZSP-14
Sequence operation with main unit	Tachogenerator follower	JZSP-15
		JZSP-16
Amplify or reduce signal	Signal mixor	JZSP-16-01
Amplify or reduce signal	Signal mixer	JZSP-16-02
		JZSP-16-03

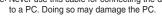
LCD Operator

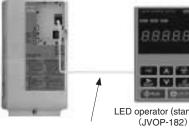

For easier operation when using the optional LCD operator. Includes a copy function for saving drive settings.


Model	Code No.
JVOP - 180	100-041-022
0001 100	100 041 022



Dimensions (mm)




Communication cable connector

Operator Extension Cable

Enables remote operation

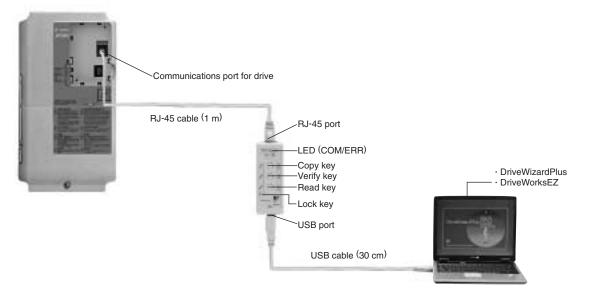
Model	Code No.		
WV001 (1 m) WV001			
WV003 (3 m) WV003			
Note: Never use this cable for connecting the drive			

8888 LED operator (standard)

LCD operator (JVOP-180)

LCD operator extension cable

Operator Mounting Bracket


This bracket is required to mount the LED or LCD operator outside an enclosure panel.

Item	Model	Code No.	Installation	Notes
Installation Support Set A	EZZ020642A	100-039-992	M4×10 truss head screw M3×6 pan head screw	For use with holes through the panel
Installation Support Set B	EZZ020642B	100-039-993	M4 nut M3×6 pan head screw	For use with panel mounted threaded studs Note: If weld studs are on the back of the panel, use the In- stallation Support Set B.

USB Copy Unit (Model: JVOP-181)

Copy parameter settings in a single step, then transfer those settings to another drive. Connects to the RJ-45 port on the drive and to the USB port of a PC.

Connection

Connecting to a PC

Note: No USB cable is needed to copy parameters to other drives.

 $+ \times \times$

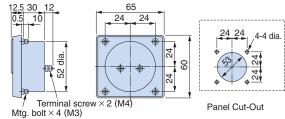
Model	Code No.
JVOP-181	100-038-281

Note: JVOP-181 is a set consisting of a USB copy unit, RJ-45 cable, and USB cable.

Specifications

Item	Specifications	
Port	LAN (RJ-45)	
USB (Ver.2.0 compatible)		
Power Supply	Supplied from a PC or the drive	
Operating System	Windows2000/XP	
Memory	Memorizes the parameters for one drive.	
Dimensions	s 30 (W) × 80 (H) × 20 (D) mm	
Accessories	RJ-45 Cable(1 m), USB Cable(30 cm)	

Note: 1. Drives must have identical software versions to copy parameters settings.
2. Requires a USB driver.
3. Parameter copy function disabled when connected to a PC.


Frequency Meter/Current Meter

Model	Code No.
Scale-75 Hz full-scale: DCF-6A	FM000065
Scale-60/120 Hz full-scale: DCF-6A	FM000085
Scale-5 A full-scale: DCF-6A	DCF-6A-5A
Scale-10 A full-scale: DCF-6A	DCF-6A-10A
Scale-20 A full-scale: DCF-6A	DCF-6A-20A
Scale-30 A full-scale: DCF-6A	DCF-6A-30A
Scale-50 A full-scale: DCF-6A	DCF-6A-50A

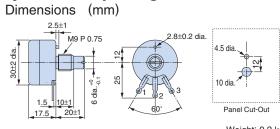
ner impedance. Because the A1000 multi-function analog monitor output default setting is 0 to 10 V, set frequency meter adjusting potentiometer (20 $k\Omega)$ or parameter H4-02 (analog monitor output

(mm)Dimensions

gain) within the range of 0 to 3 V.

Weight: 0.3 kg

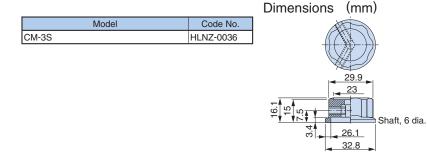
Variable Resistor Board (installed to drive terminals) ection Diagram



		Connection D
Model	Code No.	
Meter scale 20 k Ω	ETX003120	→ ¬¬RH
		Weight: 20 g

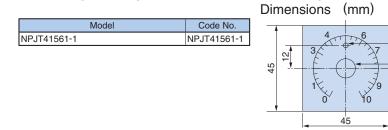
Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer

Model	Code No.
RV30YN20S 2 kΩ	RH000739
RV30YN20S 20 kΩ	RH000850

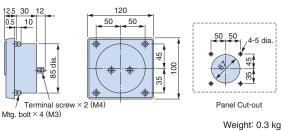

3.6 dia.

9.5 dia.

Weight: 0.2 kg


Control Dial for Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer

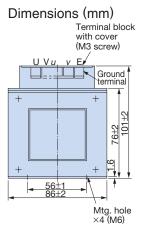
Meter Plate for Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer



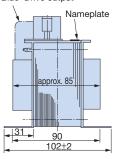
Output Voltage Meter

Model	Code No.	
Scale-300 V full-scale	VM000481	
(Rectification Type Class 2.5: SCF-12NH)	VIVI000461	
Scale-600 V full-scale	VM000502	
(Rectification Type Class 2.5: SCF-12NH)	v IVI000502	

Dimensions (mm)



Potential Transformer

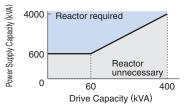


Model	Code No.	
600 V meter for voltage transformer	100-011-486	
UPN-B 440/110 V (400/100 V)		

Note: For use with a standard voltage regulator. A standard voltage regulator may not match the drive output voltage. Select a regulator specifically designed for the drive output (100-011-486), or a voltmeter that does not use a transformer and offers direct read out.

Weight: 2.2 kg

Application Notes


Selection

Installing a Reactor

An AC or DC reactor can be used for the following situations:

- \cdot when the power supply is 600 kVA or more.
- to smooth peak current that results from switching a phase advance capacitor.
- \cdot to improve the power supply power factor.
- A DC reactor comes standard with 200 V and 400 V class models with a capacity of 22 kW or more.

Be sure to use an AC reactor when the drive is using a power supply system with a thyristor converter.

Drive Capacity

When running a specialized motor or more than one motor in parallel from a single drive, the capacity of the drive should be larger than 1.1 times of the total motor rated current.

Starting Torque

The overload rating for the drive determines the starting and accelerating characteristics of the motor. Expect lower torque than when running from line power. To get more starting torque, use a larger drive or increase both the motor and drive capacity.

Emergency Stop

When the drive faults out, a protective circuit is activated and drive output is shut off. This, however, does not stop the motor immediately. Some type of mechanical brake may be needed if it is necessary to halt the motor faster than the Fast Stop function is able to.

Options

The B1, B2, +1, and +2 terminals are used to connect optional devices. Connect only A1000-compatible devices.

Repetitive Starting/Stopping

Cranes (hoists), elevators, punching presses, and other such applications with frequent starts and stops often exceed 150% of their rated current values. Heat stress generated from repetitive high current can shorten the lifespan of the IGBTs. The expected lifespan for the IG-BTs is about 8 million start and stop cycles with a 2 kHz carrier frequency and a 150% peak current.

Yaskawa recommends lowering the carrier frequency, particularly when audible noise is not a concern. The

user can also choose to reduce the load, increase the acceleration and deceleration times, or switch to a larger drive. This will help keep peak current levels under 150%. Be sure to check the peak current levels when starting and stopping repeatedly during the initial test run, and make adjustments accordingly.

For cranes and other applications using the inching function in which the drives starts and stops the motor repeatedly, Yaskawa recommends the following steps to ensure torque levels:

- Select a large enough drive so that peak current levels remain below 150%.
- \cdot The drive should be one frame size larger than the motor.

Installation

Enclosure Panels

Keep the drive in a clean environment by either selecting an area free of airborne dust, lint, and oil mist, or install the drive in an enclosure panel. Leave the required space between the drives to provide for cooling, and take steps to ensure that the ambient temperature remains within allowable limits. Keep flammable materials away from the drive. If the drive must be used in an area where it is subjected to oil mist and excessive vibration, protective designs are available. Contact Yaskawa for details.

Installation Direction

The drive should be installed upright as specified in the manual.

Settings

Use V/f Control when running multiple induction motors at the same time.

- If using Open Loop Vector Control designed for permanent magnet motors, make sure that the proper motor code has been set to parameter E5-01 before performing a trial run.
- Upper Limits

Because the drive is capable of running the motor at up to 400 Hz, be sure to set the upper limit for the frequency to control the maximum speed. The default setting for the maximum output frequency is 60 Hz.

DC Injection Braking

Motor overheat can result if there is too much current used during DC Injection Braking, or if the time for DC Injection Braking is too long.

Acceleration/Deceleration Times

Acceleration and deceleration times are affected by how much torque the motor generates, the load torque, and the inertia moment (GD²/4). Set a longer accel/decel time when Stall Prevention is enabled. The accel/decel times are lengthened for as long as the Stall Prevention function is operating. For faster acceleration and deceleration, increase the capacity of the drive.

Compliance with Harmonic Suppression Guidelines

A1000 conforms to strict guidelines in Japan covering harmonic suppression for power conversion devices. Defined in JEM-TR201 and JEM-TR226 and published by the Japan Electrical Manufacturers' Association, these guidelines define the amount of harmonic current output acceptable for new installation. Refer to JEM-TR226 for more information on Japanese standards for harmonic suppression for power convertors.

General Handling

Wiring Check

Never short the drive output terminals or apply voltage to output terminals (U/T1, V/T2, W/T3), as this can cause serious damage to the drive. Doing so will destroy the drive. Be sure to perform a final check of all sequence wiring and other connections before turning the power on. Make sure there are no short circuits on the control terminals (+V, AC, etc.), as this could damage the drive.

Magnetic Contactor Installation

Avoid switching a magnetic contactor on the power supply side more frequently than once every 30 minutes. Frequent switching can cause damage to the drive.

Inspection and Maintenance

After shutting off the drive, make sure the CHARGE light has gone out completely before preforming any inspection or maintenance. Residual voltage in drive capacitors can cause serious electric shock.

The heatsink can become quite hot during operation, and proper precautions should be taken to prevent burns. When replacing the cooling fan, shut off the power and wait at least 15 minutes to be sure that the heatsink has cooled down.

Wiring

Make sure to use ring tongue solderless terminals when wiring UL/cUL-certified drives. Use the tools recommended by the terminal manufacturer for caulking. Transporting the Drive

Never steam clean the drive.

During transport, keep the drive from coming into contact with salts, fluorine, bromine and other such harmful chemicals.

Peripheral Devices

Installing an MCCB

Install an MCCB or a ground fault interrupter recommended by Yaskawa to the power supply side of the drive to protect internal circuitry. The type of MCCB needed depends on the power supply power factor (power supply voltage, output frequency, load characteristics, etc.). Sometimes a fairly large MCCB may be required due to the affects of harmonic current on operating characteristics. Those using a ground fault interrupter other than those recommended in this catalog, use one fitted for harmonic suppression measures (one designed specifically for drives). The rated current of the ground fault interrupter must be 200 mA or higher per drive unit.

Select an MCCB or a ground fault interrupter with a rated capacity greater than the short-circuit current for the power supply. For a fairly large power supply transformer, a fuse can be added to the ground fault interrupter or MCCB in order to handle the short-circuit current level.

Magnetic Contactor for Input Power

Use a magnetic contactor (MC) to ensure that power to the drive can be completely shut off when necessary. The MC should be wired so that it opens when a fault output terminal is triggered.

Even though an MC is designed to switch to a momentary power loss, frequent MC use can damage other components. Avoid switching the MC more than once every 30 minutes. The MC will not be activated after a momentary power loss if using the operator keypad to run the drive. This is because the drive is unable to restart automatically when set for LOCAL. Although the drive can be stopped by using an MC installed on the power supply side, the drive cannot stop the motor in a controlled fashion, and it will simply coast to stop. If a braking resistor or dynamic braking unit has been installed, be sure to set up a sequence that opens the MC with a thermal protector switch connected to the braking resistor device.

Magnetic Contactor for Motor

As a general principle, the user should avoid opening and closing the magnetic contactor between the motor and the drive during run. Doing so can cause high peak currents and overcurrent faults. If magnetic contactors

Application Notes (continued)

are used to bypass the drive by connecting the motor to the power supply directly, make sure to close the bypass only after the drive is stopped and fully disconnected from the motor. The Speed Search function can be used to start a coasting motor.

Use an MC with delayed release if momentary power loss is a concern.

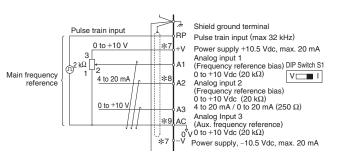
Motor Thermal Over Load Relay Installation

Although the drive comes with built in electrothermal protection to prevent damage from overheat, a thermal relay should be connected between the drive and each motor if running several motors from the same drive. For a multipole motor or some other type of non-standard motor, Yaskawa recommends using an external thermal relay appropriate for the motor. Be sure to disable the motor protection selection parameter (L1-01 = 0), and set the thermal relay or thermal protection value to 1.1 times the motor rated current listed on the motor nameplate.

Improving the Power Factor

Installing a DC or AC reactor to the input side of the drive can help improve the power factor.

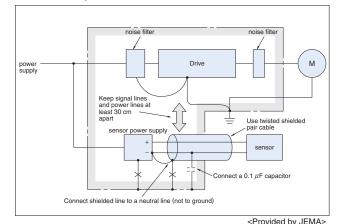
Refrain from using a capacitor or surge absorber on the output side as a way of improving the power factor, because harmonic contents on the output side can lead to damage from overheat. This can also lead to problems with overcurrent.


Radio Frequency Interference

Drive output contains harmonic contents that can affect the performance of surrounding electronic instruments such as an AM radio. These problems can be prevented by installing a noise filter, as well as by using a properly grounded metal conduit to separate wiring between the drive and motor.

Wire Gauges and Wiring Distance

Motor torque can suffer as a result of voltage loss across a long cable running between the drive and motor, especially when there is low frequency output. Make sure that a large enough wire gauge is used.


The optional LCD operator requires a proprietary cable to connect to the drive. If an analog signal is used to operate the drive via the input terminals, make sure that the wire between the analog operator and the drive is no longer than 50 m, and that it is properly separated from the main circuit wiring. Use reinforced circuitry (main circuit and relay sequence circuitry) to prevent inductance from surrounding devices. To run the drive with a frequency potentiometer via the external terminals, use twisted shielded pair cables and ground the shield.

Counteracting Noise

Because A1000 is designed with PWM control, a low carrier frequency tends to create more motor flux noise than using a higher carrier frequency. Keep the following points in mind when considering how to reduce motor noise:

- \cdot Lowering the carrier frequency minimizes the effects of noise.
- A line noise filter can reduce the affects on AM radio frequencies and poor sensor performance. See "Options and Peripheral Devices" on page 24.
- Make sure the distance between signal and power lines is at least 10 cm (up to 30 cm is preferable), and use twisted pair cable to prevent induction noise from the drive power lines.

Leakage Current

Harmonic leakage current passes through stray capacitance that exists between the power lines to the drive, ground, and the motor lines. Consider using the following peripheral devices to prevent problems with leakage current.

	Problem	Solution
Ground Leakage Current	MCCB is mistakenly triggered	 Lower the carrier frequency set to parameter C6-02. Try using a component designed to minimize harmonic distortion for the MCCB such as the NV series by Mitsubishi.
Current Leakage Between Lines	Thermal relay connected to the external terminals is mistakenly triggered by harmonics in the leakage current	 Lower the carrier frequency set to parameter C6-02. Use the drive's built-in thermal motor protection function.

Setting the Carrier Frequency Relative to Wiring Distance

-			-
Wiring Distance	50 m or less	100 m or less	100 m or more
C6-02:	1 to A	1, 2, 7 to A	1, 7 to A
Carrier Frequency Selection	(15 kHz or less)	(5 kHz or less)	(2 kHz or less)
(C6-02:	C6-02: 1 to A	j

When running multiple motors from a single drive, remember that the motor cable length is determined as the total length of all motor cables combined.

Use V/f Control when motor wiring is longer than 100 m. Because V/f Control is not possible with a PM motor, be sure to keep motor wiring shorter than 100 m when using a PM motor.


Speed Search should be set for Current Detection Speed Search when running multiple motors.

Notes on Motor Operation

Using a Standard Motor

Low Speed Range

There is a greater amount of loss when operating a motor using an drive than when running directly from line power. With a drive, the motor can become quite hot due to the poor ability to cool the motor at low speeds. The load torque should be re-

duced accordingly at low speeds. The figure above shows the allowable load characteristics for a Yaskawa motor. A motor designed specifically for operation with a drive should be used when 100% continuous torque is needed at low speeds.

Insulation Tolerance

Consider voltage tolerance levels and insulation in applications with an input voltage of over 440 V or particularly long wiring distances. Contact Yaskawa for consultation.

High Speed Operation

Problems may occur with the motor bearings and dynamic balance in applications operating at over 60 Hz. Contact Yaskawa for consultation.

Torque Characteristics

Torque characteristics differ when operating directly from line power. The user should have a full understanding of the load torque characteristics for the application.

Vibration and Shock

A1000 lets the user choose between high carrier PWM control and low carrier PWM. Selecting high carrier PWM can help reduce motor oscillation. Keep the fol-

lowing points in mind when using high carrier PWM:

(1) Resonance

Take particular caution when using a variable speed drive for an application that is conventionally run from line power at a constant speed. Shock-absorbing rubber should be installed around the base of the motor and the Jump Frequency selection should be enabled to prevent resonance.

(2) Any imperfection on a rotating body increases vibration with speed.

Caution should be taken when operating above the motor rated speed.

(3) Subsynchronous Resonance

Subsynchronous resonance may occur in fans, blowers, turbines, and other applications with high load inertia, as well as in motors with a relatively long shaft. Yaskawa recommends using Closed Loop Vector Control for such applications.

Audible Noise

Noise created during run varies by the carrier frequency setting. Using a high carrier frequency creates about as much noise as running from line power. Operating above the rated speed (i.e., above 60 Hz), however, can create unpleasant motor noise.

Using a Synchronous Motor

- Please contact us for consultation when using a synchronous motor not already approved by Yaskawa.
- For applications running a synchronous motor with the drive set for Heavy Duty performance (particularly hoists and conveyor applications), use Closed Loop Vector Control for PM (A1-02 = 7). Contact Yaskawa for details.
- When the power to a drive running a PM motor is shut off, voltage continues to be generated at the motor terminals while the motor coasts to stop. Take the precautions described below to prevent shock and injury:
 - Applications where the machine can still rotate even though the drive has fully stopped should have a load switch installed to the output side of the drive. Yaskawa recommends manual load switches from the AICUT LB Series by Aichi Electric Works Co., Ltd.
 - Do not connect to a load that could potentially rotate the motor faster than the maximum allowable speed even when the drive has been shut off.
 - Wait at least one minute after opening the load switch on the output side before inspecting the drive or performing any maintenance.
 - \cdot Do not open and close the load switch while the motor

is running, as this can damage the drive.

- If the motor is coasting, make sure the power to the drive is turned on and the drive output has completely stopped before closing the load switch.
- Synchronous motors cannot be started directly from line power. Applications requiring line power to start should use an induction motor with the drive.
- A single drive is not capable of running multiple synchronous motors at the same time. Use a standard induction motor for such setups.
- At start, a synchronous motor may rotate slightly in the opposite direction of the Run command depending on parameter settings and motor type.
- The amount of starting torque that can be generated differs by the type of motor being used. Set up the motor with the drive after verifying the starting torque, allowable load characteristics, impact load tolerance, and speed control range.

Contact Yaskawa if you plan to use a motor that does not fall within these specifications.

- Even with a braking resistor, braking torque is less than 125% when running between 20% to 100% speed, and falls to less than half the braking torque when running at less than 20% speed.
- The allowable load inertia moment is 50 times less than the motor inertia moment. Contact Yaskawa concerning applications with a larger inertia moment.
- When using a holding brake, release the brake prior to starting the motor. Failure to set the proper timing can result in speed loss. Conveyor, transport, and hoist applications using a holding brake should run an IPM motor in Closed Loop Vector Control for PM motors.
- To restart a coasting motor rotating at over 120 Hz, use the Short Circuit Braking* function to first bring the motor to a stop. Short Circuit Braking requires a special braking resistor. Contact Yaskawa for details.
 - Speed Search can be used to restart a coasting motor rotating slower than 120 Hz. If the motor cable is relatively long, however, the motor should instead be stopped using Short Circuit Braking and then restarted.
 - * Short Circuit Braking creates a short-circuit in the motor windings to forcibly stop a coasting motor.

Applications with Specialized Motors

Multi-Pole Motor

Because the rated current will differ from a standard motor, be sure to check the maximum current when selecting a drive. Always stop the motor before switching between the number of motor poles. If a regen overvoltage fault occurs or if overcurrent protection is triggered, the motor will coast to stop.

Submersible Motor

Because motor rated current is greater than a standard motor, select the drive capacity accordingly. Be sure to use a large enough motor cable to avoid decreasing the maximum torque level on account of voltage drop caused by a long motor cable.

Explosion-Proof Motor

Both the motor and drive need to be tested together to be certified as explosion-proof. The drive is not for explosion proof areas.

An explosion-proof pulse generators (PG) is used for an explosion-proof with voltage tolerance. Use a specially designed pulse coupler between the drive and the PG when wiring.

Geared Motor

Continuous operation specifications differ by the manufacturer of the lubricant. Due to potential problems of gear damage when operating at low speeds, be sure to select the proper lubricant. Consult with the manufacturer for applications that require speeds greater than the rated speed range of the motor or gear box.

Single-Phase Motor

Variable speed drives are not designed for operating single phase motors. Using a capacitor to start the motor causes excessive current to flow into the capacitors, potentially causing damage. A split-phase start or a repulsion start can end up burning out the starter coils because the internal centrifugal switch is not activated. A1000 is for use only with 3-phase motors.

Uras Vibrator

Uras vibrator is a vibration motor that gets power from centrifugal force by rotating unbalanced weights on both ends of the shaft. Make the following considerations when selecting a drive for use with an Uras vibrator:

- Uras vibrator should be used within the drive rated frequency
- (2) Use V/f Control

(3) Increase the acceleration time five to fifteen times longer than would normally be used due to the high amount of load inertia of an Uras vibrator

Note: Contact Yaskawa for applications that require an acceleration time of less than 5 s.

(4) Drive may have trouble starting due to undertorque that results from erratic torque (static friction torque at start)

Motor with Brake

Caution should be taken when using a drive to operate a motor with a built-in holding brake. If the brake is connected to the output side of the drive, it may not release at start due to low voltage levels. A separate power supply should be installed for the motor brake. Motors with a built-in brake tend to generate a fair amount of noise when running at low speeds.

Power Driven Machinery (decelerators, belts, chains, etc.)

Continuous operation at low speeds wears on the lubricating material used in gear box type systems to accelerate and decelerate power driven machinery. Caution should also be taken when operating at speeds above the rated machine speed due to noise and shortened performance life.

YASKAWA AC Drive Series

	Name	Feature		Capacity Range (kW) 0.1 1 10 100 300 630	Outline
			Three-Phase 200 V Class	0.1 5.5	Ultra-small body enables side-by-side installation. Compact design of enclosure panel Easy operation with the Potentiometer Option Unit The noise-suppressing Swing PWM system reduces harsh sound.
	J1000	Compact V/f Control AC Drive	Single-Phase 200 V Class	0.1 2.2	\cdot The full-range fully-automatic torque boost function provides high torque output. (100%/1.5 Hz. 150%/3 Hz)
			Three-Phase 400 V Class	0.2 5.5	The Stall Prevention function and the momentary power loss ride-thru ensure continuous operation, regardless of load/power supply fluctuations or momentary power loss. The Overexcitation braking function enables rapid braking, without using a braking resistor.
			Three-Phase 200 V Class	0.1	Small body and high performance (Current vector control) New technology for driving synchronous motors (IPMM/SPMM) as well as induction motors
	V1000	Compact Vector Control AC Drive	Single-Phase 200 V Class	0.1 3.7	 High starting torque: 200%/0.5 Hz* Torque limit function * At Heavy Duty rating, for induction motors with 3.7 kW or lower
			Three-Phase 400 V Class	0.2 18.5	Application-specific function selection for simplified optimum setup Easy maintenance using the detachable terminal block with the parameter backup function
		Advanced Vector	Three-Phase 200 V Class	0.4	New technology for driving synchronous motors (IPMM/SPMM) as well as induction motors High starting torque IPM motor without a motor encoder: 0 r/min 200% torque
ose	A1000	Control AC Drive	Three-Phase 400 V Class	0.4 630	 Application preset function selection for simplified optimum setup Easy maintenance using the detachable terminal block with the parameter backup function
General Purpose	Varispeed F7	Advanced Current Vector Control General-purpose	Three-Phase 200 V Class	0.4	Open Loop Vector control ensures 150% or higher torque during operation at 0.5 Hz. Flux Vector Control provides high torque of 150% at zero speed. Easy maintenance and inspection using the detachable
		Inverter Minimal Noise	Three-Phase 400 V Class	0.4 300	 control circuit terminals and the detachable cooling fan PID control and energy-saving control The Auto-Tuning function upgrades all types of general motors to be compatible with high-performance drives.
		General-purpose Inverter With	Three-Phase 200 V Class	0.4	 The 400 V class uses 3-level control for a more perfect output waveform. Open Loop Vector control ensures 150% or higher torque during operation at 0.3 Hz. Flux Vector Control provides a high torque of 150% at zero speed.
	Varispeed G7	Advanced Vector Control Minimal Noise	Three-Phase 400 V Class	0.4 300	 Easy maintenance and inspection using the detachable control circuit terminals and the detachable cooling fan. Software for various applications (for crane, hoist, etc.) The Auto-Tuning function upgrades all types of general motors to be compatible with high-performance drives.
	Varispeed AC	Environmentally Friendly Motor Drives	Three-Phase 200 V Class	5.5	The world's first matrix converter system that outputs AC voltage from AC voltage, and includes power supply regeneration capabilities. The simple, highly-efficient drive can remarkably reduce power supply
		Matrix Converter	Three-Phase 400 V Class Three-Phase	0.4 75	harmonics, without using peripherals. • Enables continuous operation of a synchronous motor
	Varispeed F7S	Super Energy-Saving Variable Speed Drive	200 V Class Three-Phase 400 V Class	0.4 300*	 (without PG) after momentary power loss, and startup of a coasting synchronous motor (without PG). Enables compact configuration of building air-condi- tioning system using LONWORKS.
	VS-626M5 Vector-controlled		Three-Phase 200 V Class	3.7	
		Three-Phase 400 V Class	5.5 45	For multiple-axis drive systems For machine tool spindle drives High-precision, quick-response, high-reliability	
I Use	VS-626MR5	Inverter Drives With	Three-Phase 200 V Class	3.7 37	AC drive system capable of using vector control to run a high-speed AC motor.
Special Use	Function For Machine Tools	Three-Phase 400 V Class	5.5 45	. For mashing tool spindle drives	
	VS-626MC5		Three-Phase 200 V Class Three-Phase 400 V Class	0.4 75	For machine tool spindle drives Drive system capable of using vector control to run a high-speed AC motor.
	VS-646HF5	High-frequency Inverter Drives	Three-Phase 200 V Class	2.2 7.5	Provides a high rotation speed of 420,000 r/min in combination with a high-speed (2-pole) motor

* Maximum capacity without PG: 160 kW

Region	Service Area	Service Location	Service Agency	Telephone/Fax
North America	U.S.A.	Chicago (HQ) Los Angeles San Francisco New Jersey Boston Ohio North Carolina	1 YASKAWA ELECTRIC AMERICA INC.	Headquarters
	Mexico	Mexico City	2 PILLAR MEXICANA. S.A. DE C.V.	☎ +52-555-660-5553 FAX +52-555-651-5573
South America	South America	São Paulo	⁽⁶⁾ YASKAWA ELÉTRICO DO BRASIL LTD.A.	☎+55-11-3585-1100FAX+55-11-5581-8795
	Colombia	Bogota	OVARIADORES LTD.A.	☎ +57-1-428-4225 FAX +57-1-428-2173
Europe	Europe, South Africa	Frankfurt	SYASKAWA ELECTRIC EUROPE GmbH	☎ +49-6196-569-300 FAX +49-6196-569-398
			6 YASKAWA ENGINEERING EUROPE GmbH	 ☎ +49-6196-569-520 FAX +49-6196-888-598
Asia	Japan	Tokyo, offices nationwide	YASKAWA ELECTRIC CORPORATION (Manufacturing, sales)	 ☎ +81-3-5402-4502 FAX +81-3-5402-4580
			ØYASKAWA ELECTRIC ENGINEERING CORPORATION (After-sales service)	☎ +81-4-2931-1810 FAX +81-4-2931-1811
	South Korea	Seoul	9 YASKAWA ELECTRIC KOREA CORPORATION	☎ +82-2-784-7844 FAX +82-2-784-8495
			@ YASKAWA ENGINEERING KOREA Co.	 ☎ +82-2-3775-0337 FAX +82-2-3775-0338
	China	Beijing, Guangzhou, Shanghai	(1)YASKAWA ELECTRIC (SHANGHAI) Co., Ltd.	☎ +86-21-5385-2200 FAX +86-21-5385-3299
	Taiwan	Taipei	(2) YASKAWA ELECTRIC TAIWAN Co.	☎ +886-2-2502-5003 FAX +886-2-2505-1280
	Singapore	Singapore	(YASKAWA ELECTRIC (SINGAPORE) Pte. Ltd.	 ☎ +65-6282-3003 FAX +65-6289-3003
			(YASKAWA ENGINEERING ASIA-PACIFIC Pte. Ltd.	☎ +65-6282-1601 FAX +65-6282-3668
	Thailand	Bangkok	(YASKAWA ELECTRIC (THAILAND) Co., Ltd.	☎ +66-2-693-2200 FAX +66-2-693-2204
	India	Mumbai	(LARSEN & TOUBRO LIMITED	Headquarters +91-22-67226200 +91-22-27782230 FAX +91-22-27783032
Oceania	Australia	Sydney (HQ) Melbourne	BOBOTIC AUTOMATION Pty. Ltd.	Headquarters

$\Delta 10$

IRUMA BUSINESS CENTER (SOLUTION CENTER) 480, Kamifujisawa, Iruma, Saitama 358-8555, Japan Phone: 81-4-2962-5696 Fax: 81-4-2962-6138

YASKAWA ELECTRIC CORPORATION

New Pier Takeshiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo, 105-6891, Japan Phone: 81-3-5402-4511 Fax: 81-3-5402-4580 http://www.yaskawa.co.jp

YASKAWA ELECTRIC AMERICA, INC.

2121 Norman Drive South, Waukegan, IL 60085, U.S.A. Phone: (800) YASKAWA (800-927-5292) or 1-847-887-7000 Fax: 1-847-887-7310 http://www.yaskawa.com

YASKAWA ELÉTRICO DO BRASIL COMÉRCIO LTDA. Avenda Fagundes Filho, 620 Bairro Saude, São Paulo, SP04304-000, Brasil Phone: 55-11-3585-1100 Fax: 55-11-5581-8795 http://www.yaskawa.com.br

YASKAWA ELECTRIC EUROPE GmbH

Hauptstraße 185, 65760 Eschborn, Germany Phone: 49-6196-569-300 Fax: 49-6196-569-398

YASKAWA ELECTRIC UK LTD. 1 Hunt Hill Orchardton Woods, Cumbernauld, G68 9LF, United Kingdom Phone: 44-1236-735000 Fax: 44-1236-458182

YASKAWA ELECTRIC KOREA CORPORATION 7F, Doore Bldg. 24, Yeoido-dong, Youngdungpo-Ku, Seoul, 150-877, Korea Phone: 82-2-784-7844 Fax: 82-2-784-8495

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.

151 Lorong Chuan, #04-02A, New Tech Park, 556741, Singapore Phone: 65-6282-3003 Fax: 65-6289-3003

YASKAWA ELECTRIC (SHANGHAI) CO., LTD.

No.18 Xizang Zhong Road, Room 1702-1707, Harbour Ring Plaza, Shanghai, 200001, China Phone: 86-21-5385-2200 Fax: 86-21-5385-3299

YASKAWA ELECTRIC (SHANGHAI) CO., LTD. BEIJING OFFICE Room 1011A, Tower W3 Oriental Plaza, No.1 East Chang An Ave., Dong Cheng District, Beijing, 100738, China Phone: 86-10-8518-4086 Fax: 86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION

9F, 16, Nanking E. Rd., Sec. 3, Taipei, Taiwan Phone: 886-2-2502-5003 Fax: 886-2-2505-1280

YASKAWA ELECTRIC CORPORATION

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply Specifications are subject to change without notice for ongoing product modifications and improvements

© 2008-2011 YASKAWA ELECTRIC CORPORATION. All rights reserved.

LITERATURE NO. KAEP C710616 22F Published in Japan January 2011 08-7 (5)-1 10-3-3 Printed on 100% recycled paper soy INK ,, with soybean oil ink.