

บทที่ 6 มอเตอร์ไฟฟ้า

6.1 วงจรมอเตอร์ตัวเดียว

รูปที่ 6.1 วงจรมอเตอร์ทั่วไป

วงจรทั่วไปของมอเตอร์ประกอบด้วยอุปกรณ์หลัก ดังนี้

- 1. เครื่องปลดวงจรและเครื่องป้องกันกระแสลัดวงจร อาจใช้เป็นสวิตช์พร้อมฟิวส์ หรือ เชอร์กิตเบรกเกอร์ก็ได้ ทำหน้าที่ปลดวงจรและป้องกันมอเตอร์และสายไฟฟ้าเนื่องจากการ เกิดลัดวงจร
- 2. เครื่องควบคุมมอเตอร์ ประกอบด้วยหน้าสัมผัสแม่เหล็กไฟฟ้าและโอเวอร์โหลด รีเลย์ หรืออาจใช้เป็นอุปกรณ์อื่นที่สามารถสับ-ปลดมอเตอร์ได้เช่น solid stated หรือ soft start เป็นต้น โอเวอร์โหลดรีเลย์ทำหน้าที่ป้องกันกันมอเตอร์เนื่องจาก overload
 - 3. ตัวมอเตอร์

6.1.1 การกำหนดขนาดสายไฟฟ้า สายไฟฟ้าของมอเตอร์ต้องมีขนาดกระแสไม่ต่ำกว่า 1.25 เท่าของกระแสโหลดเต็มที่ (full load current) ของมอเตอร์ซึ่งดูได้จาก name plate ของ มอเตอร์ แต่ต้องไม่เล็กกว่า 1.5 ตร.มม. เขียนเป็นสมการได้ดังนี้

ขนาดกระแสของสายไฟฟ้า ≥ 1.25 × กระแสโหลดเต็มที่ของมอเตอร์

6.1.2 การกำหนดพิกัดเครื่องป้องกันกระแสลัดวงจร เครื่องป้องกันกระแสลัดวงจร อาจใช้เป็นฟิวส์ หรือเซอร์กิตเบรกเกอร์ก็ได้ กำหนดขนาดเป็นร้อยละของกระแสโหลดเต็มที่ ตาม ตารางที่ 6.1

ตารางที่ 6.1 พิกัดหรือขนาดปรับตั้งสูงสุดของเครื่องป้องกันกระแสลัดวงจรระหว่างสาย และป้องกันการรั่วลงดินของวงจรมอเตอร์

33312 22 4117311 1 0 0 331 44170 22 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
ร้อยละของกระแสโหลดเต็มที่					
ฟิวส์ ทำงานไว	ฟิวส์ หน่วงเวลา	เซอร์กิตเบรกเกอร์ ปลดทันที	เซอร์กิตเบรกเกอร์ เวลาผกผัน		
300	175	800	250		
300	175	800	250		
300	175	800	250		
300	175	800	250		
150	150	800	150		
150	150	250	150		
	ทำงานไว300300300300150	ฟิวส์ ทำงานไว ฟิวส์ หน่วงเวลา 300 175 300 175 300 175 300 175 300 175 150 150	ฟิวส์ ทำงานไว ฟิวส์ หน่วงเวลา เชอร์กิตเบรกเกอร์ ปลดทันที 300 175 800 300 175 800 300 175 800 300 175 800 300 175 800 300 175 800 150 150 800		

a no mo Maria Mo

กรณีกระแสที่คำนวณได้ไม่ตรงกับขนาดมาตรฐานการผลิตของเครื่องป้องกันกระแสเกิน สามารถเลือกขนาดหรือพิกัดที่สูงถัดขึ้นไปได้

เครื่องป้องกันกระแสลัดวงจรนี้ใช้เพื่อป้องกันกรณีลัดวงจร กรณี overload จะมี overload relay ทำหน้าที่ป้องกัน

ตัวอย่างที่ 6.1 ต้องการกำหนดขนาดสายไฟฟ้าและเชอร์กิตเบรกเกอร์ของ Induction motor ชนิด 1 เฟส แรงดัน 230 V ขนาด 7.5 kW กระแสโหลดเต็มที่ 52.3 A (กำหนดให้ใช้สาย NYY แกนเดียวเดินร้อยท่อโลหะเกาะผนัง)

วิธีทำ

สายไฟฟ้า

ขนาดกระแสของสายไฟฟ้า ≥ 1.25 × กระแสโหลดเต็มที่ของมอเตอร์

≥ 1.25 × 52.3 = 65.4 A

ตารางที่ 5-20 ได้สาย NYY ขนาด 16 ตร.มม. (66 A) หรือดูจากภาคผนวก G เชอร์กิตเบรกเกอร์

ขนาดเซอร์กิตเบรกเกอร์ \leq 2.5 × กระแสโหลดเต็มที่ของมอเตอร์

 \leq 2.5 × 52.3 = 130.75 A

เลือกใช้เซอร์กิตเบรกเกอร์ขนาด 125 A หรือดูจากภาคผนวก G

หมายเหตุ เลือกใช้เชอร์กิตเบรกเกอร์ขนาด 100 A ก็ได้ถ้าเชอร์กิตเบรกเกอร์ไม่ปลดวงจรเนื่องจากการ start มอเตอร์

6.2 วงจรมอเตอร์หลายตัว

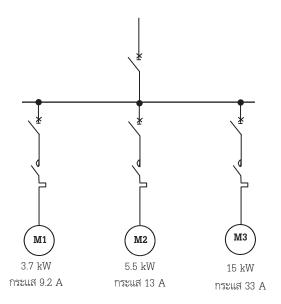
6.2.1 การกำหนดขนาดสายไฟฟ้า กำหนดจากกระแสโหลดเต็มที่ของมอเตอร์ทุกตัว ดังนี้

> ขนาดกระแสของสายไฟฟ้า ≥ (1.25 × กระแสโหลดเต็มที่ของมอเตอร์ตัวใหญ่ที่สุด) + กระแสโหลดเต็มที่ของมอเตอร์ที่เหลือทุกตัว

วงจรมอเตอร์ที่มีโหลดอื่นรวมอยู่ด้วย (เช่นไฟฟ้าแสงสว่าง) ขนาดสายไฟฟ้าต้อง ไม่เล็กกว่าที่คำนวณได้ข้างต้นบวกด้วยโหลดอื่นตามที่คำนวณได้

6.2.2 การกำหนดขนาดเครื่องป้องกันกระแสลัดวงจร อาจเป็นฟิวส์หรือเซอร์กิต เบรกเกอร์ก็ได**้** กำหนดขนาดเหมือนกัน ดังนี้

ขนาดเครื่องป้องกันกระแสลัดวงจร < เครื่องป้องกันกระแสลัดวงจรของมอเตอร์ตัวใหญ่ที่สุด + กระแสโหลดเต็มที่ของมอเตอร์ที่เหลือทุกตัว


วงจรมอเตอร์ที่มีโหลดอื่นรวมอยู่ด้วย ขนาดเครื่องป้องกันกระแสลัดวงจรต้องไม่เล็กกว่า ที่คำนวณได้ข้างต้นบวกด้วยโหลดอื่นตามที่คำนวณได้

ตัวอย่างที่ 6.2 วงจรไฟฟ้าประกอบด้วยมอเตอร์ชนิด 3 เฟส 400 V จำนวน 3 ตัว ตามที่แสดง ในรูปข้างล่าง ต้องการกำหนดขนาดสายไฟฟ้าและเซอร์กิตเบรกเกอร์ของมอเตอร์แต่ละตัวและ ของสายป้อนวงจรมอเตอร์ (กำหนดให้ใช้สาย NYY แกนเดียวเดินร้อยท่อโลหะเกาะผนัง)

> มอเตอร์ M1 ขนาด 3.7 kW กระแส 9.2 A มอเตอร์ M2 ขนาด 5.5 kW กระแส 13 A มอเตอร์ M3 ขนาด 15 kW กระแส 33 A

วิธีทำ

ขนาดกระแสของสายไฟฟ้า $\geq 1.25 \times$ กระแสโหลดเต็มที่ของมอเตอร์ ขนาดเซอร์กิตเบรกเกอร์ $\leq 2.5 \times$ กระแสโหลดเต็มที่ของมอเตอร์

มอเตอร์ M1

ขนาดกระแสของสายไฟฟ้า $\geq 1.25 \times 9.2 = 11.5 \, \mathrm{A}$ ตารางที่ 5-20 ได้ สาย NYY ขนาด 1.5 ตร.มม. (13 A) (หรือดูภาคผนวก G) ขนาดเซอร์กิตเบรกเกอร์ $\leq 2.5 \times 9.2 = 23 \, \mathrm{A}$ เลือกใช้เซอร์กิตเบรกเกอร์ขนาด 20 A (หรือดูภาคผนวก G)

มอเตอร์ M2

ขนาดกระแสของสายไฟฟ้า ≥ 1.25 × 13 = 16.25 A ตารางที่ 5-20 ได้สาย NYY ขนาด 2.5 ตร.มม. (18 A) ขนาดเชอร์กิตเบรกเกอร์ ขนาดเชอร์กิตเบรกเกอร์ ≤ 2.5 × 13 = 32.5 A เลือกใช้เชอร์กิตเบรกเกอร์ขนาด 32 A

บทที่ 6 มอเตอร์ไฟฟ้า

มอเตอร์ M3

ขนาดกระแสของสายไฟฟ้า ≥ 1.25 × 33 = 41.25 A

ตารางที่ 5-20 ได้ สาย NYY ขนาด 10 ตร.มม. (44 A)

ขนาดเซอร์กิตเบรกเกอร์

ขนาดเซอร์กิตเบรกเกอร์ \leq 2.5 \times 33 = 82.5 A

เลือกใช้เซอร์กิตเบรกเกอร์ขนาด 80 A

สายป้อน

สายไฟฟ้า

ขนาดกระแสของสายไฟฟ้า ≥ (1.25 × กระแสโหลดเต็มที่ของมอเตอร์ตัวใหญ่ที่สุด) + กระแสโหลดเต็มที่ของมอเตอร์ที่เหลือทุกตัว

$$\geq$$
 (1.25 × 33) + 9.2 + 13 = 63.45 A

ตารางที่ 5-20 ได้สาย NYY ขนาด 25 ตร.มม. (77 A)

เซอร์กิตเบรกเกอร์

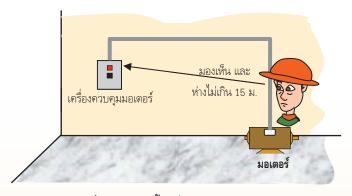
ขนาดเชอร์กิตเบรกเกอร์ ≤ เครื่องป้องกันกระแสลัดวงจรของมอเตร์ตัวใหญ่ที่สุด
+ กระแสโหลดเต็มที่ของมอเตอร์ที่เหลือทุกตัว

$$\geq$$
 80 + 9.2 + 13 = 102.2 A

เลือกใช้เซอร์กิตเบรกเกอร์ขนาด 100 A หรือ 125 A

6.2.3 ดีมานด์แฟกเตอร์ของวงจรมอเตอร์ ในสถานที่ซึ่งมีมอเตอร์เป็นจำนวนมาก และมอเตอร์ทุกตัวไม่ได้ทำงานพร้อมกัน ในการคำนวณโหลดสามารถใช้ดีมานด์แฟกเตอร์ตาม สภาพการใช้งานที่เหมาะสมได้ เพื่อลดขนาดสายไฟฟ้า เซอร์กิตเบรกเกอร์ และหม้อแปลงไฟฟ้า

6.3 เครื่องป้องกันการใช้งานเกินกำลัง


เครื่องป้องกันการใช้งานเกินกำลัง (overload relay) เป็นอุปกรณ์ป้องกันการใช้งาน มอเตอร์เกินกำลัง เพราะถ้าปล่อยให้มอเตอร์ใช้งานเกินกำลังเป็นเวลานานมอเตอร์อาจชำรุดหรือ ใหม่ได้ การปรับตั้งค่าเครื่องป้องกันการใช้งานเกินกำลังจะปรับตั้งไว้ที่ไม่เกิน 100% ของกระแส โหลดเต็มที่ของมอเตอร์ แต่กรณีที่จำเป็นเนื่องจากมอเตอร์ไม่สามารถ start ได้จะสามารถปรับค่า เพิ่มขึ้นได้อีกแต่ต้องไม่เกิน 130%

เครื่องป้องกันการใช้งานเกินกำลังชนิดอื่นเช่น เครื่องวัดความร้อนที่ติดไว้กับขดลวดของ มอเตอร์ การปรับตั้งให้เป็นไปตามที่ผู้ผลิตแนะนำ

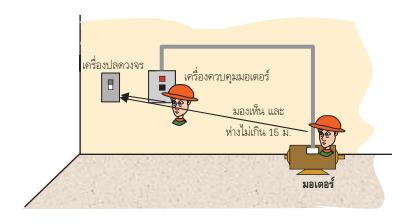
6.4 เครื่องควบคุมมอเตอร์

เครื่องควบคุมมอเตอร์ต้องมีพิกัดไม่ต่ำกว่าขนาดของมอเตอร์ที่ใช้งาน ตำแหน่งติดตั้งต้อง ให้ผู้ใช้งานสามารถปฏิบัติงานบำรุงรักษาได้โดยปลอดภัย เครื่องควบคุมมอเตอร์ต้องติดตั้งให้มอง เห็นได้จากตำแหน่งที่ตั้งมอเตอร์และห่างจากมอเตอร์ไม่เกิน 15 ม.

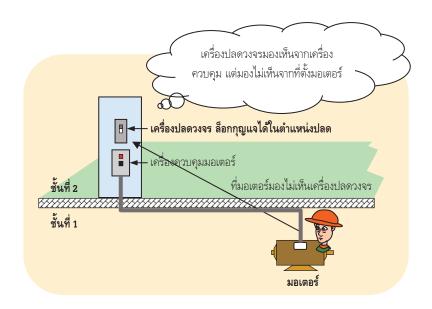
การเลือกใช้ magnetic contactor ต้องพิจารณา utilization categories ให้ เหมาะสมด้วย ตามตารางที่ 6.2

รูปที่ 6.2 การติดตั้งเครื่องควบคุมกับมอเตอร์

(มองเห็นได้จากตำแหน่งที่ตั้งมอเตอร์และห่างจากมอเตอร์ไม่เกิน 15 ม.)


บทที่ 6 มอเตอร์ไฟฟ้า

6.5 เครื่องปลดวงจรมอเตอร์


เครื่องปลดวงจรต้องสามารถปลดมอเตอร์ออกจากวงจรได้อย่างปลอดภัย มีพิกัดไม่ต่ำ กว่า 1.15 เท่าของกระแสมอเตอร์ ตำแหน่งติดตั้งเครื่องปลดวงจรต้องเป็นดังนี้

- 1. มองเห็นได้จากที่ตั้งเครื่องควบคุมมอเตอร์และห่างกันไม่เกิน 15 ม. (รูปที่ 6.3)
- 2. เครื่องปลดวงจรต้องมองเห็นได้จากที่ตั้งมอเตอร์และเครื่องจักรที่ขับ (รูปที่ 6.3)
- 3. ถ้าเครื่องปลดวงจรนั้นสามารถล็อกกุญแจได้ในตำแหน่งปลดวงจร อนุญาตให้ เครื่องปลดวงจรมองต้องไม่เห็นจากที่ตั้งมอเตอร์และห่างกันเกิน 15 ม. ได้ (รูปที่ 6.4)

รูปที่ 6.3 เครื่องปลดวงจรมองเห็นได้จากทั้งที่เครื่องควบคุมมอเตอร์และมอเตอร์ และห่างไม่เกิน 15 ม.

รูปที่ 6.4 เครื่องปลดวงจรล็อกกุญแจได้ในตำแหน่งปลด (ไม่ต้องมองเห็นจากที่ตั้งมอเตอร์ก็ได้หรือห่างเกิน 15 ม. ได้)

ตารางที่ 6.2 Utilization Categories ตามมาตรฐาน IEC

Categories	Typical Application		
AC-1	Non-inductive or slightly inductive loads, Resistance Furnaces		
AC-2	Slip-ring Motor: Starting, Switching off		
AC-3	Squirrel-cage Motors: Starting, Switching off Motor During Running		
AC-4	Squirrel-cage motors: Starting, Plugging, Inching		
AC-5a	Switching of Electric Discharge Lamp Controls		
AC-5b	Switching of Incandescent Lamps		
AC-6a	Switching of Transformers		
AC-6b	Switching of Capacitor Banks		
AC-7a	Slightly Inductive Loads in Household Appliance and Similar Appliances		
AC-7b	Motor Loads for Household Appliances		
AC-8a	Hermetic Refrigerant Compressor Motor Control with Manual Resetting of		
	Overload Release		
AC-8b	Hermetic Refrigerant Compressor Motor Control with Automatic Resetting of		
	Overload Release		
DC-1	Non-inductive or Slightly Inductive Loads, Resistance Furnaces		
DC-3	Shunt-Motors: Starting, Plugging, Inching, Dynamic Breaking of DC-Motors		
DC-5	Series-Motor: Starting, Plugging, Inching, Dynamic Breaking of DC-Motors		
DC-6	Switching of Incandescent Lamps		

หมายเหตุ 1. AC หมายถึง ไฟฟ้ากระแสสลับ DC หมายถึง ไฟฟ้ากระแสตรง

- 2. Categories AC-3 อาจใช้งานกับมอเตอร์ที่มีการเดิน-หยุด สลับกันเป็นครั้งคราว แต่การสลับ จะต้องไม่เกิน 5 ครั้งต่อนาที และต้องไม่เกิน 10 ครั้งใน 10 นาที
 - 3. Plugging คือ การหยุดหรือสลับเฟสอย่างรวดเร็วในระหว่างที่มอเตอร์กำลังเดินอยู่
- 4. Inching หรือ Jogging คือ การจ่ายไฟให้มอเตอร์ซ้ำ ๆ กัน ในช่วงเวลาสั้น ๆ เพื่อต้องการให้ มอเตอร์หรือเครื่องจักรที่มอเตอร์ขับอยู่เคลื่อนตัวเล็กน้อย

ตารางที่ 6.3 Degree of Protection ตาม IEC 60529 และ มอก. 513

3				
รหัส	รหัสตัวแรก แสดงความสามารถในการป้องกันวัตถุ (ของแข็ง) เล็ดลอดเข้าภายใน	รหัสตัวที่สอง แสดงความสามารถในการป้องกันของเหลว เข้าไปทำความเสียหาย		
0	ไม่มีการป้องกัน	ไม่มีการป้องกัน		
1	ป้องกันวัตถุที่มีขนาดใหญ่กว่า 50 มิลลิเมตร เช่น สัมผัสด้วยมือ	ป้องกันหยดเฉพาะในแนวดิ่ง		
2	ป้องกันวัตถุที่มีขนาดใหญ่กว่า 12 มิลลิเมตร เช่น นิ้วมือ	ป้องกันหยดและน้ำสาดทำมุมไม่เกิน 15 องศา กับแนวดิ่ง		
3	ป้องกันวัตถุที่มีขนาดใหญ่กว่า 2.5 มิลลิเมตร เช่น เครื่องมือ เส้นลวด	ป้องกันหยดและน้ำสาดทำมุมไม่เกิน 60 องศา กับแนวดิ่ง		
4	ป้องกันวัตถุที่มีขนาดใหญ่กว่า 1 มิลลิเมตร เช่น เครื่องมือเล็ก ๆ เส้นลวดเล็ก ๆ	ป้องกันน้ำสาดเข้าทุกทิศทาง		
5	ป้องกันฝุ่น	ป้องกันน้ำฉีดเข้าทุกทิศทาง		
6	ผนิกกันฝุ่น	ป้องกันน้ำฉีดอย่างแรงเข้าทุกทิศทาง		
7	-	ป้องกันน้ำท่วมชั่วคราว		
8	-	ป้องกันน้ำเมื่อใช้งานอยู่ใต้น้ำ		

