

TECHNICAL DATA SHEET

Plastic pipe clamp CLIC 8–64

1. Product description

The most efficient mounting system for pipes, cables and many other applications. Diameter dimensions ranging from 8 to 64 mm for the indoor area.

2. Application areas

- · Electrical installation of all kinds in the indoor area
- Installation technology
- Installations within the chemical industry
- · Sanitary installations / hot and cold water pipes

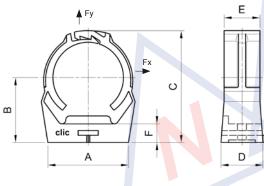
3. Features

- One-piece, self locking plastic pipe clamp
- Tool-free installation system
- Very high dynamic load and stress corrosion crack stability
- Very low moisture absorption
- Chloride- and weather resistant
- UV resistant (for the exterior)
- Wide range of mounting temperature from -25 °C to +90 °C
- Mounting with metrical or wood screws
- Approved by: KIWA (ø 8–51mm), UL (1565/2043)
- 100 % made in Switzerland

4. Material data

Material quality Density at +20 °C Elongation at yield E-Modulus in tension Water absorption at 23 °C Moisture absorption (23 °C / 50 % r.F.) Dielectric strength Weather proof Maximum service temperature short term +120 °C Maximum service temperature long term Flammability Impact value (Charpy, +23 °C) Impact value (Charpy, -30 °C) Halogen Petrol, diesel, oil Corrosion Chloride salt 1 IV Standard colours

Polymerblend 1.21g/cm³ 5% 2100 MPa 0.50% 0.15% 33 kV/mm -25 °C up to +90 °C +90°C HB according to UL 94 56 kJ/m² $29 \, kJ/m^2$ halogen free as per IEC 754-2 resistant resistant resistant resistant as per ISO 4892-2 light grey (similar to RAL 7035)



5. Technical data

Туре	Clamping range [mm]		A [mm]	B [mm]	[mm] C [mm] D [mm]		E [mm]	F [mm] H*		Breaking load [N]	
	min.	max.							wood [mm]	metric	Fy/Fx**
8	7.8	9.5	17.1	17.5	26.4	17.1	14.5	7.5	3.5	M6	450
10	9.5	11.8	17.1	17.5	26.2	17.1	14.5	7.5	3.5	M6	470
12	11.8	14.3	20.2	19.5	28.3	17.2	14.5	7.5	3.5	M6	500
15	14.3	16.8	20.6	18.8	32.0	17.1	14.5	7.5	3.5	M6	650
17	16.8	19.5	22.5	23.7	35.4	19.5	16.0	7.8	4.5	M6	700
20	19.5	21.8	24.8	24.9	39.4	20.0	16.3	7.8	4.5	M6	750
22	21.8	24.8	27.8	26.0	42.0	20.0	16.5	7.8	4.5	M6	800
25	24.8	27.8	30.4	28.0	45.1	20.0	17.0	8.8	4.5	M6	900
28	27.8	31.2	33.4	31.7	48.9	20.2	17.0	8.8	4.5	M6	950
32	31.2	35.5	38.0	34.5	54.4	21.0	17.5	9.0	4.5	M6 / M8	1100
36	35.5	39.5	41.8	36.5	59.4	21.0	18.0	9.1	4.5	M6 / M8	1200
40	39.5	43.5	46.2	38.2	64.2	21.0	18.6	9.4	4.5	M6 / M8	1350
47	46.5	50.5	53.5	43.0	72.8	22.0	19.5	9.8	4.5	M6 / M8	1400
51	50.5	55.5	58.6	46.8	78.7	23.0	20.0	10.2	4.5	M6 / M8	1500
59	58.5	64.0	66.3	52.0	88.2	23.2	21.0	10.7	4.5	M6 / M8	1600

* H = screw diameter; wood screw (wood) / metal screw (metric) ** with screw DIN 96 at +20 °C, safety factor must be considered!

Bottom view

CLIC flange M6

M6

10.2

5.1

9

20

2 dick

CLIC flange M8

2 dick

И'8

10.2

5.1

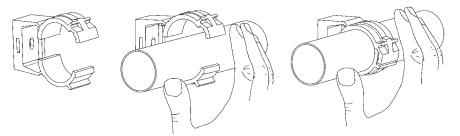
8.5

6. Selection guide

Туре	Steel p	oipe	Copper pipe	Cast iron pipe	PE pipe	PVC pipe	Cable-ducts	Coaxial cable	Certific	ation	Breaking load [N]
	mm	inch	mm	mm	mm	mm	metric measures M	inch	Kiwa	UL	Fy/Fx**
8							8		\checkmark	\checkmark	450
10			10				10		\checkmark	\checkmark	470
12	13.5	1⁄4"	12				12		\checkmark	\checkmark	500
15			15			16	16	1⁄2"	\checkmark	\checkmark	650
17	17.2	3⁄8"	18						\checkmark	\checkmark	700
20	21.3	1⁄2"				20	20	5⁄8"	\checkmark	\checkmark	750
22			22						\checkmark	\checkmark	800
25	26.9	3⁄4"				25	25		\checkmark	\checkmark	900
28			28					7⁄8"	\checkmark	\checkmark	950
32	33.7	1"	35		32	32	32		\checkmark	\checkmark	1100
36								1¼"	\checkmark	\checkmark	1200
40	42.4	11⁄4"	42		40		40		\checkmark	\checkmark	1350
47	48.3	11⁄2"		48	50	50	50	15⁄8"	\checkmark	\checkmark	1400
51			54						\checkmark	\checkmark	1500
59	60.3	2"	64			63				\checkmark	1600

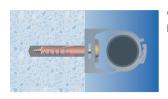
 ** with screw DIN 96 at +20 °C, safety factor must be considered!

2


7. Chemical resistance

Material	Concentration	Resistance at +23 °C	Material	Concentration	Resistance at +23 °C
Acetic acid	5%	••	Heptane, Hexane		
Acetone		•	Hydraulic oil		••
Acetylene			Hydrochloric acid	10 %	
Ammonia	liquid	••	Hydrogen fluoride		••
Benzine			Inert gas		
Brake fluid			Iso-octane		
Butane			Isopropanol		
Butanol		••	Ketone aliphatic		•
Butyl acetate		••	Lacquer		
Carbon monoxide			Methanol		
Carbon tetrachloride		•	Methyene chloride		•
Carbonic acide			Mineral oil		
Caustic potash	10 %	•	Naphaline		••
Chlorbenzene		•	Nitric acid	10 %	••
Chlorine gas		•	Nitrohydrochloric acid		•
Chloroform		•	Oleum		•
Citric acid	10 %		Ozone		•
Decalin		••	Paraffin		
Dibutylphthalate		••	Perchloric acid		•
Diesel fuel		•••	Petroleum ether		
Dimethyl formamide		•	Phosphoric acid	10 %	000
Dimethylether		••	Potassium hypochlorite	N	000
Dioctylphthalate		••	Silicon oils		
Dioxan		•	Sodium hydroxide	10 %	•
Engine oil			Soldering water		••
Ethanol			Styrol		••
Ethyl acetate		••	Sulphuric acid	10 %	
Ethyl ether			Tetradydrofurene		•
Ethylene oxide		000	Toluene		••
Fatty acide		••	Transmission oil		
Fatty alcohol			Trichlorethane		•
Formic acide	10 %	•••	Trychlorethylene		•
Glycerine		•••	Turpentine		••
Glycol			Turpentineoilreplacem.		••
Glysantine		•••	Xylene		••
Heating oil					

••• resistant | •• limited resistance | • not resistant | O soluble, greatly affected



8. Installation/mounting

Simply mount CLIC, push pipe in by hand, grips and locks by applying slight pressure. To open: unlock the CLIC latch with screwdriver.

Examples of concrete base-materials

wood screw, DELTA nylon plug

wood screew, CLIC spacer, DELTA nylon plug

Examples of brickwork base-materials

TILCA anchor bolt, CLIC flange or TILCA fire resisting anchor, CLIC flange or TILCA nail plug, CLIC flange

CLIC spacer, TILCA fire resisting anchor,

wood screw, CLIC spacer, DELTA nylon plug

CLIC flange

9. Testings/authorizations/specifications/compliance

KIWA (ø 8–51mm) UL REACH, RoHS

10. Safety data sheet

not required

11. Manufacturer/brand/production

EFCO Fixing Technology Ltd Grabenstrasse 1 · 8606 Nänikon · Switzerland

CLIC is a registered international trademark of EFCO and is 100 % Swiss made. The CLIC technology is protected by Swiss and international patents held by EFCO.

12. Accessories

Further accessories, e.g. spacers, base plates for multiple mountings, are available.

The recommendations and data given are based on our experience to date and are standard values. No liability can be assumed in connection with their usage and processing. In individual cases the chemical resistance has to be verified by your own testings. For further technical information please refer to EFCO.