

PRODUCT

BROCHURE

Nanjing Bridge New Energy Technology Co., Ltd (Bridge Technology)

Web: www.bripower.com

Email: info@bripower.com (General information)

contact@bridgetech.com.sg (Int'l Sales)

PRODUCT

BROCHURE

Bi-Directional AC Sources

Bi-Directional DC Sources

Regenerative Loads

Custom Power Solutions

> ABOUT Bri Power

Nanjing Bridge New Energy Technology (Bridge Technology) was founded on Jan 12th, 2016, focusing on business of regenerative power supplies and electronic loads. We are devoted to providing high quality products and solutions for customers.

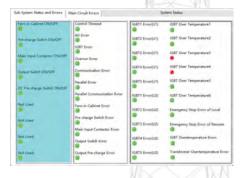
Our product brand is Bri Power

- Bi-directional AC sources
- Bi-directional DC sources
- Regenerative loads
- Custom Power Solutions

The BriPower[™] AC&DC power systems are widely used in new energy and related fields. Our Factory is on ISO Certified and The Quality Management System Confirms to the Standard GB/T19001–2016/ISO9001–2015.

> Advanced Control Technology

The BriPower power systems benefit from our unique control technology, which combines the advantages of DTC control technology and vector control technology, to achieve faster dynamic response performance and lower output ripple. This control technology uses intelligent neural filtering to effectively suppress the influence of external disturbances on the power supply's internal measurements, while recognizing system parameters at the microsecond level to make the optimal response.


> High Reliability

The controllers inside BriPower power systems keep monitoring the key status and parameters, including the system input and output voltages and currents; the power components' voltages, currents, and temperatures, the DC- bus voltage, the communication connection status, the circuit breaker and contactor status, emergency stop status, etc.

This feature greatly improves the reliability of the power systems. And, when there is a failure, fast error locating is possible by checking the fault indicators. The troubleshooting time is nearly zero.

> AC/DC PRODUCT

ZGX Series AC/DC Power Source & Load	 01
KGS Series SiC AC/DC Power Source & Load	08
ESA Series Programmable AC Power Supply	 14

> DC PRODUCT

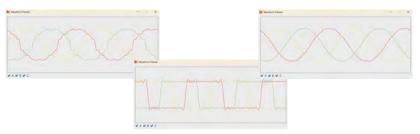
ESD Series Programmable DC Power Supply	 21
BSL Series High Power DC Source & Load	 26

> ZGX SERIES AC/DC POWER SOURCE & LOAD

The ZGX series is a compact, modular, and fully integrated AC/DC source and electronic load. It utilizes a SiC-based, interleaved topology to achieve an effective switching frequency of 160kHz. The unit is equipped with compre hensive simulation capabilities for power electronics, in cluding grid simulation, regenerative AC/DC loading, BiPolar DC power supply operation, regenerative RLC loading, and power amplification for Hardware-in-the-Loop (HIL) testing.

A single ZGX unit provides a maximum rated output power of 22.5kW within a compact 4U chassis with only 670mm depth design. It supports power expansion through a master-slave parallel interface. Its output ca pabilities are as follows: In AC mode, it can deliver up to 450V(L-N), 35A per phase, with a frequency range from DC to 1kHz. In DC mode, it can output 636V and 105A.

> Features


- Single-phase and selectable three-phase 208V, 230V, 380V, 400V (L-L) input
- AC, DC, and AC+DC output
- 4-Quadrant Operation
- Regenerative AC/DC source and load
- Regenerative RLC /RCD electronic load
- BiPolar DC power supply
- Single-phase/three-phase/split-phase/reverse-phase/ multi-channel output, each phase independently controllable
- Up to 100th harmonic waveform generation
- Supports low/high voltage ride-through and continuous fault ride-through
- Programmable phase angle jump
- Current-limiting output for short-circuit testing
- TTL trigger signal output with voltage or frequency changes

- Line impedance (RL) simulation
- Fast dynamic response
- High voltage output mode
- True current source
- User-defined waveforms
- · Soft-start function, suppresses inrush current
- Low leakage current (<10mA)
- Compact design (67 cm depth), suitable for desktop installation
- Modbus/SCPI communication
- Standard LAN interface
- USB interface on the front panel for file transfer
- Remote Sense
- Fault localization
- Remote emergency stop interface

> Harmonic and inter-harmonic waveforms generation

The ZGX series utilizes a dual-DSP control architecture, delivering exceptional waveform generation capabilities that enable precise simulation of harmonics and inter-harmonics. Users can independently configure the amplitude and phase for up to the 100th harmonic relative to a 50Hz or 60Hz fundamental frequency, allowing flexible creation of various periodic distorted test waveforms. To enhance testing efficiency, the series also incorporates 30 preset harmonic distortion waveforms for quick user access, significantly streamlining the configuration process for complex test environments.

> User defined waveform

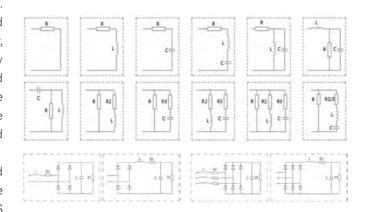
The ZGX series offers a flexible user-defined waveform function, supporting high-precision import and editing of waveforms with lengths of 1024, 2048, and 4096 points. This feature provides four waveform processing modes: full, 1/4 symmetric, symmetric, and asymmetric, and enables generation of harmonic and vector waveforms based on user-defined inputs. Edited waveform data can be saved and exported at any time, facilitating subsequent invocation and sharing.

> High Voltage Mode

The ZGX series offers a High Voltage Mode that doubles the output voltage range compared to standard operation. This mode utilizes the unit's reverse phase output capability, with the phase angle between two outputs set to a 180-degree shift. In AC mode, it delivers 900V L-N from a 450V L-N range; in DC mode, it provides 1272V output based on a 636V range, meeting higher voltage testing requirements.

> Regenerative Electronic Load

The ZGX Series power supplies integrate regenerative AC and DC electronic load functionality. In AC load mode, four operating modes are provided: Con stant Resistance (CR), Constant Current (CC), Constant Power (CP), and Rectification. Constant Resistance (CR) mode can simulate three-phase resistive loads, allowing users to set resistance values for each phase individually and supporting sequence simulation function. Constant Current (CC) and Constant Power (CP) modes can simulate sinusoidal current loads, enabling users to set current or power values and adjust the phase angle from -90° to +90° to accurately emulate the leading or lagging phase relationship between voltage and current in capacitive or inductive loads. Rectification mode is suitable for non linear rectifier load testing, supporting parameter configuration under CC or CP mode, and allowing users to set the WF (waveform factor) parameter (range: 0-2.121, CF=WF*1.414)


In DC load mode, Constant Current (CC) and Constant Power (CP) operating modes are supported, featuring sequence simulation function, along with con figurable output impedance and minimum operating voltage.

> RLC/RCD Load

The ZGX series offers advanced RLC load simulation functionality, capable of accurately simulating complex impedance loads composed of resistance (R), inductance (L), and capacitance (C), thereby realistically replicating complex load conditions. The system supports 12 classic RLC topological structures and features independent per-phase programming capability, allowing R, L, and C parameters to be configured individually for each phase. Users can flexibly construct diverse load models according to testing requirements, making it suitable for a wide range of testing scenarios including three-phase power supplies, renewable energy inverters, motor drives, and grid simulation.

In addition, the ZGX provides four types of RCD nonlinear load simulation functions, designed specifically for performance testing and reliability evaluation of devices such as UPS systems, inverter power supplies, and frequency converters. It enables accurate simulation of the dynamic characteristics of nonlinear loads, comprehensively verifying the response performance and stability of the equipment under test in harsh real-world operating conditions.

> BiPolar DC Power Supply

The ZGX series supports bipolar DC output functionality, offering both two-port and three-port connection modes to accommodate diverse testing and application requirements.

In two-port mode, users can flexibly select any two phases from the ABC three-phase system as output terminals and set their voltage polarity via software. For instance, phase A can be configured as the positive voltage output and phase B as the negative voltage output. The output polarity can be easily reversed by reconfiguring phase A as negative and phase B as positive, enabling rapid polarity switching.

In three-port mode, phase A serves as the positive voltage output terminal, phase B as the negative voltage output terminal, while the neutral terminals of phases A and B are connected together to serve as the protective earth (PE). This mode supports independent setting of positive and negative output voltages, allowing for either equal or unequal magnitude outputs, thus providing enhanced flexibility in voltage configuration.

> High-Speed Dynamic Output Performance

The ZGX series delivers excellent dynamic output performance, with a voltage slew rate up to 3V/us and a current slew rate up to 0.4A/us, making it suitable for test applications that require stringent dynamic response.

In DC voltage mode under no-load conditions, both the rise time from 0 V to 636 V and the fall time from 636 V to 0 V are less than 200 μ s. In current mode, the rise time from 0 A to 90% of full scale (FS) and the fall time from 90% FS to 0 A are each within 120 μ s. The ZGX series is designed to meet the rigorous demands of high dynamic testing applications.

> Low Leakage current

The ZGX power supply series features low leakage current. Under three-phase 220V (L-N) output conditions, the unit's ground leakage current remains below 10 mA, complying with international and domestic safety standards including IEC 60364-7-722, UL 2231, GB/T 18487.1-2023, and IEC 62752.

This characteristic makes it suitable for electric vehicle onboard charger (OBC) testing, as well as the testing and validation of various highly sensitive electrical equipment. It effectively prevents unintended tripping of RCD protection circuits, ensuring safe and stable testing operations.

> Power Hardware-in-the-Loop

The ZGX series operates in four-quadrant mode with an output frequency range from DC to 1 kHz and a small-signal bandwidth of 10 kHz, featuring rapid dynamic response capabilities. An optional analog programming interface (Model: EXDA) is available, providing an output response time of less than 20 μ s. Its performance meets the technical requirements for power amplifiers in Power Hardware-in-the-Loop (PHIL) testing applications, making it suitable for such scenarios.

> Power Expansion

The ZGX series supports master-slave parallel operation for power expansion. A single standard ZGX unit delivers up to 22.5 kW, and the system supports parallel connection of up to 10 units of the same model. For higher power requirements, a factory-configured, high-power system is available. Based on a single ZGX unit, this factory-integrated system offers a maximum output of 22.5 kW per unit. Furthermore, these high-power systems also support parallel operation of up to 10 units for further expansion.

> User-Friendly GUI Software

The ZGX series comes standard with a graphical user interface (GUI) software that enables remote control, programming communication, and real-time monitoring. The software provides functions including system configuration, output mode and parameter settings, data measurement, and waveform display. It also integrates test items with IEC 61000-4-11, IEC 61000-4-13, IEC 61000-4-17, and IEC 61000-4-28 standards, and supports high-voltage and lowvoltage ride-through (HVRT/LVRT) testing.

> Output Ranges

Model			ZGX 5	ZGX 15	ZGX 20	ZGX 22.5
(Output Power Range		5KW	15KW	20KW	22.5KW
Output Voltage Range	AC Source and Load		0~450V L-N @ 0.01~70Hz; 0~300V L-N @ 70~1kHz			
Output Voltage Kalige	DC Source and Load			0-636	V	
		Single-Phase Mode	0~30A	0~90A	0	~105A
0	AC Source and Load	3-Phase Mode	-	0~30A/ph	0~	35A/ph
Output Current Range	DC C	Single Channel	-30A~30A		-35A~35A	
	DC Source and Load	Three Channels in Parallel	-	90A~90A	-105A~105A	
High Voltage Mode - AC	Output Voltage Range		-	0~900V L-	-N @ 0.01~70Hz; 0~600V L-N @ 70~1kHz	
(Single-phase mode only)	Output Current Range		-	0~30A	C)~35A
High Voltage Mode - DC	Output Vol	ltage Range	-	0~1272V		
nigh voitage Mode - DC	Output Current Range		-	-30A~30A	-35	5A~35A
Bipolar DC Output	0. 1 1 1/2 1	Positive Voltage	-	636V		
	Output Voltage Range	Negative Voltage	-	-636V		
	Output (Current Range	-	-30A~30A	-3!	5A~35A

Note: In AC+DC mode, the output power, voltage, and current ranges are the same as those in DC mode.

> General Specifications

AC input	
Voltage	1ø, 220VL-N, 230VL-N; 3ø, 3P+GND, 380VL-L, 400VL-L
Frequency	47 - 63Hz
Efficiency	≥90%
Power Factor @ Rated Power	>0.99
THDi	<1%
Output	
Output Mode	AC, DC or AC+DC
Load Regulation	0.1%FS
Line Regulation	0.10%
AC Mode	
Frequency Range	0.01 ~ 1000Hz
Phase Angle	Phase B/C relative to phase A, 0.0~360.0°
THD	<0.5% @DC~400Hz; <1% @400~1000Hz (measured at 250VL-N, Resistive Load)
Harmonic Generation	100th@50/60Hz; 25th@400Hz
Voltage Slew Rate	≤3V/us
Current Slew Rate	≤0.4A/us
Small-Signal bandwidth	10kHz
Power Accuracy	0.2%FS
Voltage Accuracy	0.1%FS
Current Accuracy	0.4%FS(<30Hz); 0.2%FS(30~350Hz); 0.3%FS(350.01~500Hz);
Current Accuracy	0.3%+(0.7%*kHz)FS(500.01~1000Hz)
Frequency Accuracy	0.01%+0.01Hz
Phase Accuracy	<1° (@50Hz)
Power Resolution	0.001kW
Voltage Resolution	0.1V
Current Resolution	0.01A
Frequency Resolution	0.01Hz (~100Hz), 0.05Hz (>100Hz)
Phase Resolution	<0.1°
Leakage Current	<10mA @230V L-N
DC Mode	
Operating Mode	CV, CC, CP, CR, Bipolar DC Output
Voltage Accuracy	0.1%FS
Voltage Resolution	0.1V
Current Accuracy	0.1%FS
Current Resolution	0.01A
Voltage Ripple	0.1%FS

AC Source Measurement Accuracy	0.2%FS		
AC Voltage Measurement Accuracy 0.1%FS			
ACCURRENT Management Assurance	0.1%FS(<30Hz); 0.2%FS(30~350Hz); 0.1%+0.3%FS(350.01~500Hz);		
AC Current Measurement Accuracy	0.3%+(0.7%*kHz)FS(500.01~1000Hz)		
DC Voltage Measurement Accuracy	0.1%FS		
DC Current Measurement Accuracy	0.1%FS		
Frequency Measurement Accuracy	0.01%+0.01Hz		
R	Range: 0.1~1000Ω. Resolution: 0.1Ω. Accuracy: ±0.1%FS		
Range: 0.01~500mH. Resolution: 0.01mH. Accuracy: ±0.1%FS			
C Range: 0.001~50mF. Resolution: 1uF. Accuracy: ±0.1%FS			
Standard Interfaces	LAN		
Protection	OVP, OCP, OPP, OTP		
IP Ingress protection	IP21		
Cooling	Forced Air Cooling		
Temperature	Operating: 0~40°C Storage: -20~85°C		
Operating Humidity	20-90%RH (None Condensing)		
Dimensions (W *D * H, mm)	440*670*178		
Weight (kg)	ZGX 5: <40kg ZGX 15: About 47kg ZGX 20: About 50kg ZGX 22:5: About 50kg		

^{1.} When a single-phase input is used, the rated three-phase output power of the ZGX 15, ZGX 20, and ZGX 22.5 models is reduced to 5.0 kW, 6.6 kW, and 7.5 kW, respectively.

2. The optional 208/230V L-L, three-phase input is offered exclusively on the ZGX5 and ZGX15.

> Options

Slave Unit, only available for ZGX15 and ZGX20

> AC Input Configuration

/380, Input Voltage 380VLL±10%, 3P+PE
/400, Input Voltage 400VLL±10%, 3P+PE
/208, Input Voltage 208VLL±10%, 3P+PE
/230, Input Voltage 230VLL±10%, 3P+PE

> KGS SERIES SIC AC/DC POWER SOURCE & LOAD

The BriPower KGS series is a high-performance AC/DC power source/ load, using SiC MOSFET PWM technology, which contains multi output power levels from 15kVA to 1080kVA. With an output frequency range from DC to 5kHz, max output 450VL-N.

KGS series uses bi-directional design, which makes it possible to be used as grid simulator to test distributed generation systems. KGS Series is well suited for aerospace applications. Remote control interfaces and SCPI command language are provided for easy integration into ATE systems.

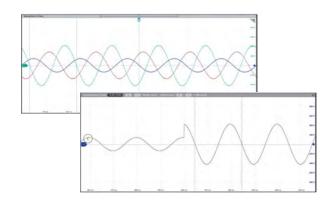
KGS series adopts dual DSP+FPGA design, with powerful calculation and control capabilities, and can display and save measured values at 10k/s sampling. The KGS series adopts optical fiber communication and performs multiple monitoring and protection of all main components, communication connections and systems. It is a reliable power supply product.

With touch panel on the front panel, users can control the power source through GUI software. System status indicators and emergency stop button are installed on the front panel. RS485, LAN and analog control interfaces are available for automated test applications.

> Features

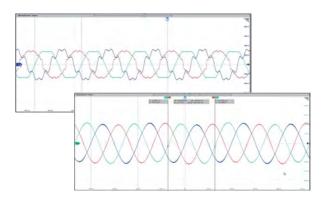
- Modular design, output power from 15kVA to 1080kVA
- Bi-directional AC/DC power source, seamless transition between source and sink modes
- Regenerative AC/DC load function
- Output: AC, DC, AC+DC
- Independent three-phase output, which can be configured as single-phase output
- Max output 450V L-N within output frequency range from DC to 5kHz
- Frequency Range: DC~ 5kHz max
- Up to 100th harmonic waveform generation,interharmonic generation
- Trigger out, TTL signal output for voltage or frequency change
- AC output, ON/OFF output phase angle can be programmed
- Using true current feedback control when working in CC mode

- RLC Load Simulation & RCD Load Simulation
- Current limit can be programmed, output can be shorted for short circuit test
- Bi-Polar DC Source (-BP option)
- Analog signal input for use as a power amplifier (delay ≤ 20µs)
- 30 Built-in harmonic waveforms
- Soft start: effectively restrain the impulse current when power on
- TFT-Touch panel operation
- Master-Slave interface
- LAN, RS485, Analog control interface
- Emergency stop button and indicators on front panel
- Mod-bus/ASCII protocols
- CE conformity
- 13 months warranty

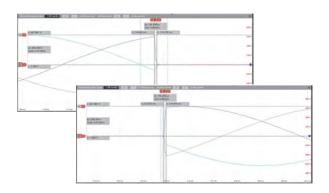


> Grid Simulation

KGS series is comprehensive, fast dynamic grid simulator for distributed generation system testing, such as the electrical characteristics of energy storage PCS, PV inverter, etc. The simulation functions include voltage and frequency fluctuation, voltage drop, high voltage ride through, low/zero voltage drop, three-phase unbalance, harmonic and inter-harmonic etc. The KGS series meets the requirements of grid tied DG regulations testing, such as: grid voltage abnormality test, grid frequency abnormality test, high voltage ride through test, low/zero voltage ride through test, anti-islanding test, etc. KGS series provides GUI software to simulate various real-world power grid operating conditions.


Voltage/frequency sequence programming

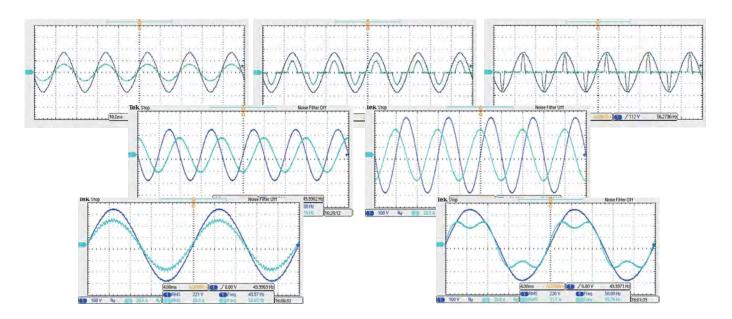
The KGS series provides voltage and frequency sequence programming function. The parameters such as output voltage, frequency, slew rate, ON/ OFF output phase angle, duration time, switching time are programmable, and three phases are independent for settings.



• Harmonic and inter-harmonic waveforms

Dual DSP+FPGA technology is use in KGS series to generate up to 100th harmonic. KGS series supports inter-harmonics editing. Users can program the phase angle and amplitude of the harmonic through the GUI, allowing generate three-phase harmonic/inter harmonic waveforms independently.

• Fast dynamic — Voltage drop simulation (LVRT test)
KGS series provides firmware and software support for
low/zero voltage ride through tests.



Note: above test waveforms were measured under resistive load.

> Re-generative AC Load¹

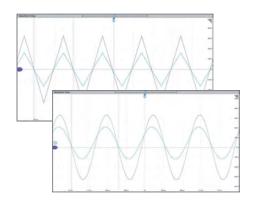
In the regenerative AC load mode, CR mode, Rectifier mode, and CC/CP phase lead/lag mode are available. CR mode is used to simulate three-phase resistive loads, the CR mode and three-phase resistance parameters can be set through the panel and can realize the program of resistance sequence. Rectifier mode can be used to simulate non-linear loads, the CC/CP mode and CF (setting range: 1.414~3) parameters can be set through the panel. CC/CP phase lead/lag mode can simulate sinusoidal current, Constant current CC and constant power CP modes are available to adjust load current or power, phase angle can be set from 90°to -90° simulating the voltage and current conditions under inductive and capacitive loads. Regenerative DC electronic load mode is also available with the KGS series, which provides CV, CC, CP, and CR operation modes.

> Current Source Mode

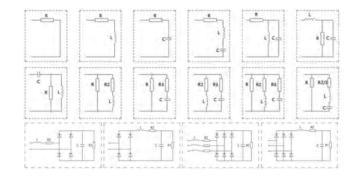
The KGS Series uses true current feedback control when working in Current source mode. It is different from power supplies using voltage feedback with constant current mode, which is called voltage controlled current. The voltage controlled current power supplies maintain setting current value by adjusting output voltage and have relatively long response time to sudden impedance changes, which typically results in dynamic current overshoot or undershoot as the load impedance changes. KGS series working in CC mode does not have such problem and will always maintain the current at the setting value, regardless of transient load conditions.

> Bi-Polar DC Source (-BP option)

The ZGX series supports bipolar DC output functionality, offering both two-port and three-port connection modes to accommodate diverse testing and application requirments.


In two-port mode, users can flexibly select any two phases from the ABC three-phase system as output terminals and set their voltage polarity via software. For instance, phase A can be configured as the positive voltage output and phase B as the negative voltage output. The output polarity can be easily reversed by reconfiguring phase A as negative and phase B as positive, enabling rapid polarity switching. In three-port mode, phase A serves as the positive voltage output terminal, phase B as the negative voltage output terminal, while the neutral terminals of phases A and B are connected together to serve as the protective earth (PE). This mode supports independent setting of positive and negative output voltages, allowing for either equal or unequal magnitude outputs, thus providing enhanced flexibility in voltage configuration.

^{1.} KGS can still output a stable and reliable current waveform even when the input voltage is not pure sine wave or the sine wave has large distortion.

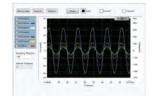

> Power Amplifier Function (analog signal input)

The KGS is a power amplifier with high dynamic response and bandwidth. The delay between input external signal and power source output $\leq 20~\mu s$.

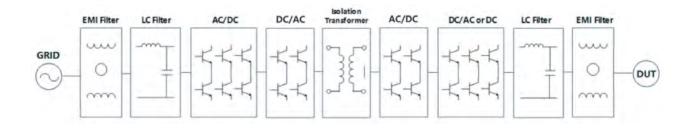
> RLC/RCD Load Simulation

The KGS series provides RLC load simulation mode, which simulates the impedance of the combinations of R, L and C components. The three phases are independently programmable, and the R, L, C values can be set respectively. KGS provides RCD non-linear load simulation function for testing UPS power supplies, inverters, etc. The KGS has four built-in RCD electrical topologies, 3- phase independently programmable, with individually programmable R, L and C parameter values.

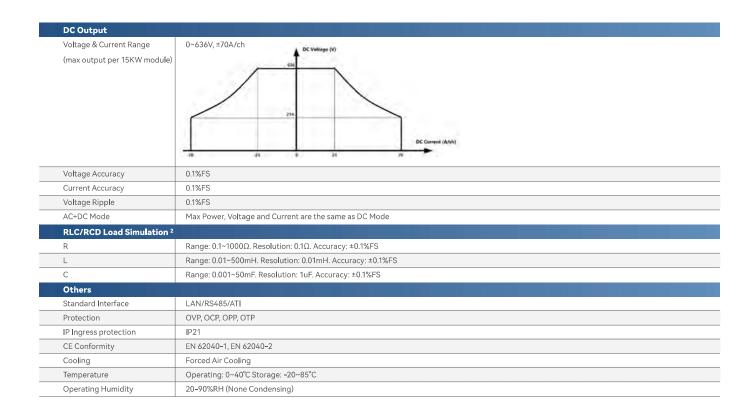
> Graphical User Interface


GUI software is installed in front touch panel, which uses Windows OS. The software provides following functions:

- Output limits and settings
- Sequence output settings: The output phase voltage, angle, frequency, ON/OFF phase angle, dwell time, switching time and other parameters of the power supply can be set.
- Real time display measurements: voltage, current, power, etc.
- Generate harmonic and inter-harmonic waveforms: Up to 100th harmonic waveform generation, inter-harmonic generation
- Capture, display and save output voltage and current waveforms
- Display power source faults



> Block Diagram



> General Specification

AC input	
Voltage	3P+N+PE, 380VLL±10%(std)
Frequency	47-63Hz
Efficiency	≥85%
Power Factor	0.99
THDi	<3%FS
Output	
Output Modes	AC, DC, or AC+DC
Power Level	From 15kVA to 1080kVA
Load Regulation	0.1%FS
Line Regulation	0.1%FS
AC Output	
Voltage & Current Range (max output per 15KW module)	Max 450V L-N, 70A @ DC~65Hz Max 375V L-N, 70A @ 65~1000Hz Max 350V L-N, 70A @ 1000~2000Hz Max 250V L-N, 60A @ 2000~3000Hz Max 150V L-N, 50A @ 3000~5000Hz KGS 45
	0 0 150 300 450 Output Voltage (V L-N)
Phase Angle Range	0 150 300 450
Phase Angle Range Frequency Range	DC~60Hz — 60~1000Hz — 1000~2000Hz — 2000~3000Hz — 3000~5000Hz
	DC~60Hz — 60~1000Hz — 1000~2000Hz — 2000~3000Hz — 3000~5000Hz Phase B/C relative to phase A, 0.0~360.0°
Frequency Range	DC -5000Hz
Frequency Range Small signal bandwidth	Phase B/C relative to phase A, 0.0~360.0° DC -5000Hz 10kHz - 0.3% @15~50Hz (measured at 250V L-N, Resistive Load) - 0.4% @50~2000Hz (measured at 250V L-N, Resistive Load) - 0.7% @500~2000Hz (measured at 250V L-N, Resistive Load) - 0.7% @2000~4000Hz (measured at 100V L-N, Resistive Load)
Frequency Range Small signal bandwidth THD	DC -5000Hz Phase B/C relative to phase A, 0.0~360.0° DC -5000Hz 10kHz <a href="https://doi.org/10.2003/bit/doi.org/10.2003</td></tr><tr><td>Frequency Range Small signal bandwidth THD</td><td>DC -60Hz — 60~1000Hz — 1000~2000Hz — 2000~3000Hz — 3000~5000Hz Phase B/C relative to phase A, 0.0~360.0° DC -5000Hz 10kHz

> Standard Models Specification

Model	Output Power	Max AC Output	Max DC Output	Dimension (W*D*H mm)	Weight(kg)
KGS 15	15kVA	450V L-N, 70A	0~636V, ±70A	800*900*1100	300
KGS 45	45kVA	450V L-N, 70A/ph	0~636V, ±70A	800*900*1500	460
KGS 90	90kVA	450V L-N, 140A/ph	0~636V, ±140A	900*900*2200	900
KGS 135	135kVA	450V L-N, 210A/ph	0~636V, ±210A	1600*900*1800	1050
KGS 180	180kVA	450V L-N, 280A/ph	0~636V, ±280A	1600*900*2200	1200
KGS 270	270kVA	450V L-N, 420A/ph	0~636V, ±420A	2400*900*2200	1800
KGS 360	360kVA	450V L-N, 560A/ph	0~636V, ±560A	3200*900*2200	2400
KGS 450	450kVA	450V L-N, 700A/ph	0~636V, ±700A	4000*900*2200	2900
KGS 540	540kVA	450V L-N, 840A/ph	0~636V, ±840A	4800*900*2200	3600

Note: Total weight < 1400KG, the cabinet bottom is wheel structure; otherwise, it is channel steel structure.

The current above is the 3-phase output current, when configured as single-phase output, the output current extended to 3 times

> Options

-BP Bi-Polar DC Source

-HV900 Increase output voltage to 900V L-N, consult factory

> AC Input Configuration³

Please specify the input voltage (L-L) /380, Input Voltage 380VLL±10%, 3P+N+PE/3P+PE /400, Input Voltage 400VLL±10%, 3P+N+PE/3P+PE /480, Input Voltage 480VLL±10%, 3P+N+PE/3P+PE

3. Other AC input is available, please consult factory.

> Model Configuration

KGS AAA-BBB/CCC AAA: Power, kVA

BBB: Option

CCC: Input configuration

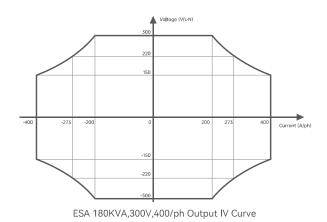
^{2.} Measured at 50/60Hz.

> ESA SERIES HIGH-POWER AC POWER SUPPLY

The ESA Series high-power AC power supply features a modular design with optional functions, delivering highly configurable power solutions, offering flexible output performance and multiple control methods, including communication interfaces and graphical software, to meet diverse testing and power supply requirements. ESA Series is widely used in applications such as new energy testing, power electronics R&D, motor drive systems, industrial manufacturing, and scientific research.

> Product Features

- Configurable output power, voltage, current, and frequency ranges
- Master-slave parallel operation for system expansion
- Programmable voltage/frequency sequences via GUI with controllable slew rates
- Optional DC output mode
- Built-in soft-start function to suppress inrush current
- Custom waveform output (clipped wave, rectified wave)
- Optional air-cooling or liquid-cooling configurations


- Grid simulator
- Regenerative electronic load
- RLC electronic load
- Touchscreen with GUI software
- LAN and RS485 interfaces
- Optional analog I/O interfaces
- Modbus and SCPI protocol
- Remote sense

> Four-Quadrant Operation

The "-R" option provides four-quadrant operation, allowing for bidirectional energy flow.

> Constant Power Auto-Ranging Output

The ESA Series provides configurable output power, voltage, and current ranges. It operates in a constant-power mode, automatically adjusting the voltage and current output within the limits.

> Grid Simulator

The ESA Series with the -R option functions as a grid simulator via its four-quadrant operation, capable of compliance testing for distributed generation. Key capabilities include simulating voltage and frequency fluctuations, dips, (LVRT/HVRT), three-phase unbalance, and harmonics.

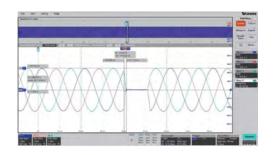
- Three-Phase Independent Output
- Programmable Voltage/Frequency/Phase Sequences
- Up to 50th Harmonic Waveform Generation
- LVRT/HVRT and continuous fault ride-through
- Islanding Mode:

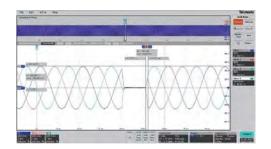
 RLC load simulation for anti-islanding testing

- Programmable Phase Angle Jumps
- Current-Limited Output Mode:
 Supports short-circuit testing at output terminals
- TTL Trigger Signal Output:
 Activates during voltage/frequency transitions
- Line Impedance (RL) Simulation


> Programmable Voltage/Frequency/Phase Sequences

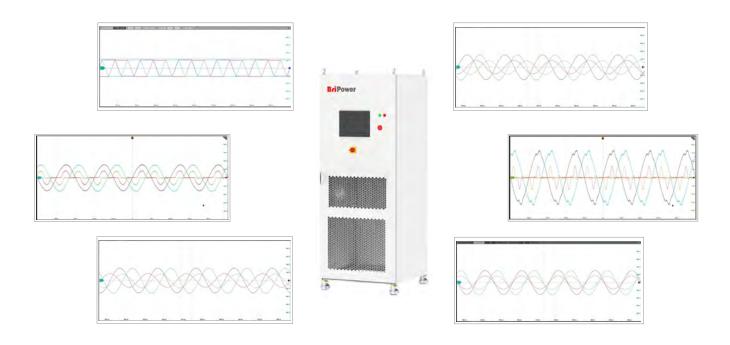
The GUI allows precise programming of output parameters including voltage, frequency, slew rates, and phase angles with full independent control over all three phases.




> Harmonic & Interharmonic Generation

The ESA Series generates harmonics up to the 50th order and supports interharmonic editing. The GUI software allows precise programming of phase angles and amplitudes, allowing for independent three-phase waveform generation.

> High/Low Voltage Ride-through


> Re-generative AC Load (-LD option) 1,2

With the -LD option, the ESA Series operates as a regenerative AC load, featuring four operational modes:

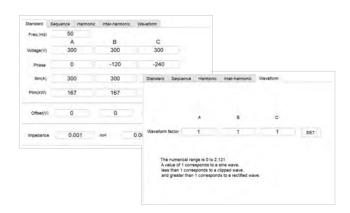
Constant Resistance (CR) Mode: Simulates three-phase resistive loads. Users can configure CR mode and set three-phase resistance parameters, enabling resistance sequence simulation.

Constant Current (CC) & Constant Power (CP) Modes: Simulate sinusoidal current loads. Users can adjust load current/power and phase angle (adjustable from 90° to -90°), replicating leading/lagging voltage-current phase relationships in inductive/capacitive loads.

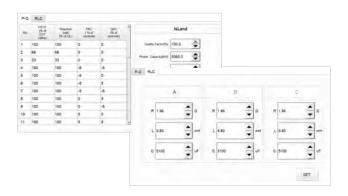
Rectifier Load Simulation Mode: Designed for nonlinear rectifier load testing. Users can configure CC/CP modes and set waveform parameters (e.g., Waveform Factor:0-2.121, CF=WF*1.414) .

> Extends to Independent DC output (-DC option)

DC output mode is available with the -DC option. The output will be DC and AC 0~100Hz. There is up to 50% output power and current derating below 30Hz.


> Line impedance (RL) Simulation (-IMP option)

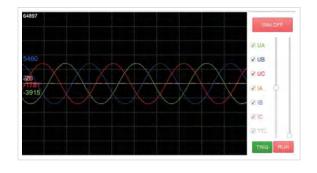
-IMP option is designed to simulate line impedance by setting R and L value. The setting range is: Rmax=0.2Urated Irated; Lmax: Rmax/314


> Custom waveform

Custom waveforms including clipped sine wave and rectified wave are available with ESA series. The waveform is programmable by modifying waveform factor. Waveform factor (WF) refers to the ratio of the peak value of a custom waveform to that of standard sine wave. When WF=1, the output waveform is a sine wave; when WF<1, the output waveform is a clipped wave; when WF>1, the output waveform is a rectified wave. This function is available in CV mode when ESA is used as source, and also in rectifier mode when ESA is used as eLoad.

> Island mode for IEC 62116 anti-island test(-62116 Option)³

Island mode of ESA simulates RLC load behavior for anti-island test. Two simulation modes are provided, which are setting parameters of PAC, QAC, PEUT and QL in mode 1, and setting R, L, C Value in mode 2.

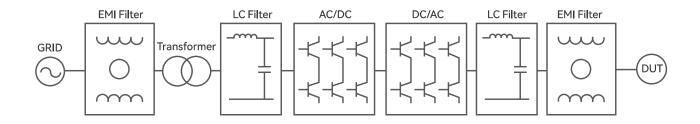


> Graphical User Interface

GUI software is installed in front touch panel, which uses Windows OS. The software provides following functions:

- -Output settings and limits
- -Sequence output settings
- -Generate harmonic and inter-harmonic waveforms.
- -Display measurements: voltage, current, power, etc.
- -Capture, display and save output voltage and current waveforms. -

Display power source faults



3. ESA-62116 can only simulate RLC load for sine waveform, 50/60Hz input

> Block Diagram

The topology of standard ESA is shown in Figure. The transformer for isolation and phase-shift is on the front by default, and then the 3-phase AC input is rectified by four quadrant PWM converters for DC bus, which is followed by DC/AC power modules. Three channels of DC/AC power modules are used for independent 3-phase AC output.

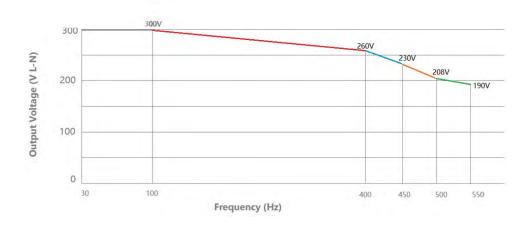
Note: The ESA series AC power supply topology with -TR option is different from the above figure

> General Specification (customized unit specification will be shown in the proposal)

Input	
AC input Voltage	3P+N+PE, 380VLL±10%(std)
Frequency	47-63Hz
Efficiency	≥90%
Power Factor	0.95
THDi	≤3%
Output	
Output Mode	AC (std),DC,AC+DC (-DC option)
Power Range	Configurable, from 30KVA~10MVA
Voltage Range	Configurable, 0~300V L-N (std), 50kV L-N (max)
Current Range	Configurable, up to 10kA/ph
Frequency range	30-100Hz (std), 40-70Hz (TR option)
Phase output	Phase B/C relative to phase A, 0.0~360.0°
Voltage Rise Time (0%~90%)	<1ms (std), <2ms (TR option)
Voltage Fall Time (90%~0%)	<1ms (std), <2ms (TR option)
Harmonic Generation	Up to 50th
Load Regulation	0.2%FS
Line Regulation	0.1%FS
Output Voltage THD	<1%FS (Resistive Load, @50/60Hz)
Power Accuracy	0.3%FS
Voltage Accuracy	0.1%FS (std), 0.2%FS (TR option)
Current Accuracy	0.2%FS
Input	
Frequency Accuracy	0.01Hz
Phase accuracy	±0.3° @50Hz
Power Resolution	0.1kW
Voltage Resolution	0.01V
Current Resolution	0.1A
Frequency Resolution	0.01Hz
Phase Resolution	0.1°

> General specifications

Measurements	
Power Accuracy	0.3%FS
Voltage Accuracy	0.1%FS(std), 0.2%FS (TR option)
Current Accuracy	0.2%FS
Frequency Accuracy	0.01Hz
Phase accuracy	±0.3° @50Hz
Others	
Standard Interface	LAN/RS485
Optional Interface	ATI/RS232
Protection	OVP, OCP, OPP, OTP
CE Conformity	EN 62040-1, EN 62040-2
Cooling	Forced Air Cooling
Temperature	Operating: 0~40°C Storage: -20~85°C
Operating Humidity	20-90%RH (None Condensing)


> Standard Models Specification

Model	Power	Voltage	Current	Dimension (W*D*H mm)	Weight(kg)
ESA 30-300-46	30kVA	300V	46A	800*800*1900	680
ESA 45-300-68	45kVA	300V	69A	800*800*2000	770
ESA 60-300-91	60kVA	300V	91A	800*800*2100	980
ESA 120-300-182	120kVA	300V	182A	1600*900*1700	1400
ESA 180-300-273	180kVA	300V	273A	1600*900*2100	1800
EAS 240-300-364	240kVA	300V	364A	1800*900*2100	2100
ESA 300-300-455	300kVA	300V	455A	2000*1000*2100	2700

> Options

-232	RS232 program interface
-LD	Regenerative AC load function
-R	Regenerative mode
-ATI	Analog control interface (0~5V)
-DC	Extend to Independent DC output (&-1P 3-ph output DC in parallel) Add
-1P -	single phase output
IMP	Line impedance (RL) simulation
-MS	Master-Slave interface
-W	Use water-cooling
-TR	Change to transformer output topology
-62116	Island mode for IEC 62116 anti-island test
-HFXXX ⁴	AC output frequency extended to XXXHz (only for CV mode)
-FHR	Frequency resolution 0.005Hz (max frequency: 70Hz)

> AC Input Configuration⁵

Please specify the input voltage (L-L)

/380, Input Voltage 380VLL±10%, 3P+N+PE/3P+PE /400, Input Voltage 400VLL±10%, 3P+N+PE/3P+PE /480, Input Voltage 480VLL±10%, 3P+N+PE/3P+PE

Max VF Derating 300V L–N Range
 Other AC input is available, please consult factory.

> Model Configuration

ESA AAA-BBB-CCC-DDD/EEE

AAA: Power, KVA

BBB: Voltage (L-N), V (std, 300V L-N)

CCC: Current (per Phase), A

DDD: Option

EEE: Input configuration

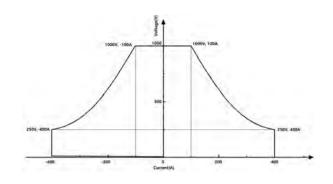
> ESD SERIES HIGH-POWER DC POWER SUPPLY

The ESD Series is an IGBT-based, PWM switching DC power supply, offering fully configurable output power, voltage, and current ranges.

Delivering up to 10MW and 50kV, the ESD Series meets the needs of highpower applications and, the bidirectional -R option enables battery simulation for new energy testing. The Dual DSP+FPGA design enables both high precision and rapid response. It provides a fine control resolution of 0.1ms for precise output adjustment, coupled with fast dynamic performance.

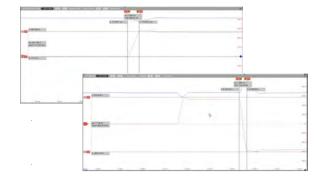
The ESD Series ensures high reliability through multi-level monitoring and protection for key components, communication, and the over all system.

> Features


- Configurable power, voltage and current ranges
- Maximum output power: 10 MW
- Maximum output voltage: 50 KV
- Master-slave parallel for power expansion
- Operating Modes: Constant Current (CC), Constant Voltage (CV), Constant Power (CP), and Constant Resistance (CR)
- Voltage and current sequences programmable via GUI
- Built-in soft-start function effectively suppresses inrush current during startup
- Configurable as a bidirectional DC power supply (-R option), operating in two quadrants for new energy testing (e.g.battery simulation)
- Configurable for fast dynamic response: Current rise time (0%-90%) < 1 ms

- Configurable as an energy regenerative DC load function (-LD option)
- PV simulation (-PV option)
- Low-voltage operation mode (-ZV option): Capable of full current output down to 0.4 V
- Optional air cooling or water cooling for heat dissipation
- Configurable output insulation monitoring function(-INS option)
- Standard interfaces: LAN and RS485
- Optional interfaces: CAN, Analog Input/Output
- Communication protocols: Modbus/SCPI
- Output terminal equipped with output switch
- Remote sensing function

> Automatic wide range output


ESD series DC power supply has an automatic wide-range output function. Under the condition of rated output power, the output range of voltage/current can be adjusted, such as: high-voltage small current or lowvoltage large current (also applicable in sink power mode). The same type of power supply can cover a wider range of power applications. ESD standard models provide x1/x3/x4 current. For customized power/voltage/ current, please consult the factory.

> Fast current rising

ESD Series has excellent dynamic performance of current rising, which makes it ideal for battery test and battery simulation. Two versions are provided, and current rise time of each version is different (below waveforms are take ESD 200-600-600-R-BSS for example).

Current Rise Time (0~90%)	<3ms (std), <1ms (BSS Option), <10ms (HPD Option)
Current Rise Time (-90~90%)	<5ms (std), <2ms (BSS Option) , <20ms (HPD Option)
Voltage Regulation Time(0-100% Load change)	<3ms (std), <1.5ms (BSS Option), <10ms (HPD Option)

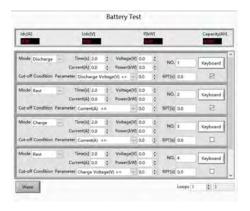
> Bi-Directional (Re-generative) (-R option)

With the -R option, the unit can operate in source and sink mode. It has the capability to return the energy fully back to the grid.

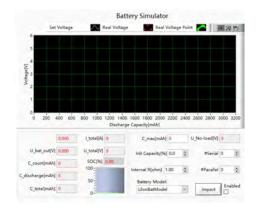
> Re-generative DC Load (-LD option) 1

ESD series with -LD option can be used as regenerative DC electronic load. DC load simulation includes constant current, constant resistance, constant voltage, and constant power modes.

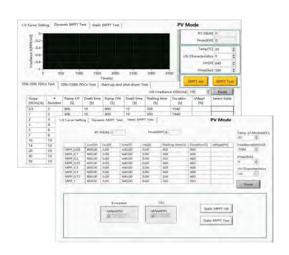
> Low Voltage Operation Mode (-ZV option)


ESD series DC electronic load with -ZV option can produce large current that meets the requirements under the input condition close to 0.4V, which can evaluate the electrical characteristics of the fuel cell (such as VI), etc.

^{1.} The -LD option must be used in combination with the -R option.


> Battery Test

ESD series DC power supply can be used for characterization of power battery packs. It is used to test the charging and discharging performance, temperature rise characteristics, and cycle life of the power battery pack. Through the GUI software, different charging and discharging profiles can be programmed, and test results are displayed in real time.


Battery Simulation (-BSS option)

ESD Series DC power supplies provides GUI software to simulate the charging and discharging characteristics of the power battery pack/package and it provides battery simulation software, which can simulate different types of batteries, lithium-ion batteries, etc., supporting multiple parameter settings, including: battery capacity, the number of cells in series and parallel, the state of charge, etc.

> PV Simulation (-PV Option)

With -PV option, ESD series power supplies can be used to simulate IV curves of various solar panels, under various temperature and irradiance condition, and conduct static and dynamic MPPT tests according to EN 50530:2010. MPP update rate: 200Hz. Irradiance levels: 0 ~1500W/m². Temperature: -10~+100°C. Temperature coefficient: +1%~-1%/°C.

> Isolated dual channels output (-2X option)

The output consists of two isolated channels, which operate as independent channels. The dual channels support parallel connection, series connection, or function as a three-port bidirectional DC source.

> Graphical User Interface

GUI software is installed in front touch panel, which uses Windows OS. The software provides following functions:

- Output settings and limits
- Sequence output settings
- Display measurements: voltage, current, power, etc.
- Capture, display and save output voltage and current waveforms
- Display power source faults

> General Specification (customized unit specification will be shown in the proposal)

Input	
AC input Voltage	3P+N+PE, 380VLL±10%(std)
Frequency	47-63Hz
Efficiency	≥90%
Power Factor	0.95
THDi	≤3%
Output	
Output Modes	CV,CC,CP and CR
Power Level	Up to 500kW in single controller, customized to 4MW and above
Voltage Ranges	Up to 2000V
Current Ranges	Please refer to the Standard Models Specification
Load Regulation	0.1%FS
Line Regulation	0.1%FS
Voltage Ripple	0.1%FS; 0.05%FS@2000V; 0.2%FS (HPD Option)
Stability	0.1%FS
Current Rise Time (0~90%)	<3ms (Std),<1ms (BSS Option),<10ms (HPD Option)
Current Rise Time (-90~90%)	<5ms (Std),<2ms (BSS Option),<20ms (HPD Option)
Voltage Regulation Time (0-100% Load change)	<3ms (Std),<1.5ms(BSS Option),<10ms (HPD Option)
Power Accuracy	0.3%FS
Voltage Accuracy	0.1%FS
Current Accuracy	0.1%FS
Power Resolution	0.02KW (~100KW), 0.1KW (100KW~500KW)
Voltage Resolution	0.05V (~800V), 0.1V (800V~2000V)
Current Resolution	0.05A (~800A), 0.1A (800A~1600A), 0.2A (1600A~3200A)
Over Current	120%, 60 seconds

Measurements	
Measurement accuracy Power	0.3%FS
Measurement accuracy Voltage	0.1%FS
Measurement accuracy Current	0.1%FS
Others	
Standard Interface	LAN/RS485
Optional Interface	CAN/ATI/RS232
Protection	OVP, OCP, OPP, OTP
CE Conformity	EN 62040-1, EN 62040-2
Cooling	Air Cooling
Temperature	Operating: 0~40°C Storage: -20~85°C
Operating Humidity	20-90%RH (None Condensing)

Note: Other Power/Voltage Level can be offered. Please consult factory

> Options

-232	RS232 program interface
-LD	Regenerative DC load function
-R	Regenerative mode
-ATI	Analog control interface (0~5V)
-BSS	Hardware and software for Battery simulation
-CAN	CAN-bus program interface
-PV	Hardware and software for PV simulation
-ZV	Low Voltage Operation Mode
-W	Use water-cooling
-MS	Master-Slave interface
-INS	Output terminal insulation monitoring function
-CH(X)	x channels output
-HPD	High power device, Please consult factory
-2X	Isolated dual channels output

> AC Input Configuration²

Please specify the input voltage (L-L)

/380, Input Voltage 380VLL±10%, 3P+N+PE/3P+PE /400, Input Voltage 400VLL±10%, 3P+N+PE/3P+PE /480, Input Voltage 480VLL±10%, 3P+N+PE/3P+PE

> Model Configuration

ESD AAA-BBB-CCC-DDD/EEE

AAA: Power, kW

BBB: Voltage range, V CCC: Current range, A

DDD: Option

EEE: Input configuration

Total weight < 1400KG, the cabinet bottom is wheel structure; otherwise, it is channel steel structure

^{2.} Other AC input is available, please consult factory.

> BSL SERIES HIGH POWER DC SOURCE & LOAD

The BSL series 100kW/150kW/200kW/250kW/300kW for single system, up to 4 individual systems can be paralleled to up to 1.2MW system. BSL series has an auto-ranging output function. BSL standard models provide 1000V/1500V/2000V voltage and x2/x3/x4 current.

BSL series uses bi-directional design, which can be used as DC power source or regenerative DC load. CV/CC/CP/CR operation modes are available for both sourcing and sinking.

The BSL series incorporates a hardware architecture based on dual DSP and FPGA, delivering powerful processing and precise control. This platform enables real-time data sampling, and storage. The waveforms are displayed at a sampling rate of 10 k/s. BSL series provides comprehensive monitoring and protection for all critical components and communication links. This integrated design ensures system stability and reliability, making the BSL series a high-performance power solution for demanding industrial applications. With touch panel on the front panel, users can control the power source through GUI software. System status indicators and emergency stop button are installed on the front panel. RS485 and LAN interfaces are available for automated test applications.

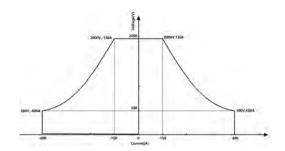
> Features

- Output Power: 100kW/150kW/200kW/250kW/300kW
- Output Voltage: 1000V/1500V/2000V
- Output Current: *2 / *3 / *4
- Auto-Ranging Output
- Soft start: effectively restrain the impulse current when power on
- Seamless transition between source and sink modes
- Current rise time (0% -90%) <5ms
- CC/CV/CP/CR mode available
- Regenerative DC load function

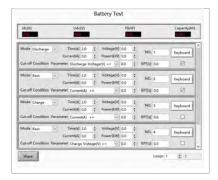
> Bi-Directional (Re-generative)

BSL series can operate in source and sink mode. It has the capability to return the energy fully back to the grid.

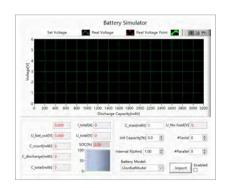
- Master-Slave interface
- LAN/RS485 interfaces
- Emergency stop button and indicators on front panel
- TFT-Touch panel operation
- Mod-bus protocol
- Output contactor
- Remote sense
- CE conformity
- 13 months Warranty


> Re-generative DC Load

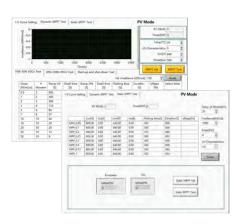
BSL series can be used as regenerative DC electronic load. DC load simulation includes constant current, constant resistance, constant voltage, and constant power modes.


> Automatic wide range output

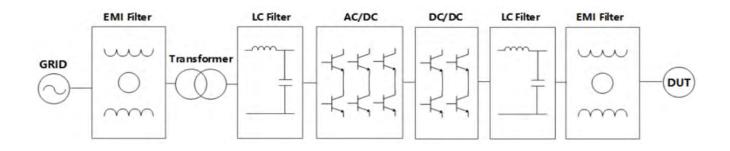
BSL series has an automatic wide-range output function, such as: high-voltage small current or low-voltage large current (also applicable in sink power mode). The same model of power supply can cover a wider range of power applications.


> Battery Test

BSL series provides battery test software and can be used for characterization of power battery packs. It is used to test the charging and discharging performance, temperature rise characteristics, and cycle life of the power battery pack. Through the GUI software, different charging and discharging profiles can be programmed, and test results are displayed in real time.


> Battery Simulation

BSL Series provides battery simulation software and can simulate the charging and discharging characteristics of the power battery pack/package and provide a convenient and efficient testing method for the development and testing of new energy vehicle motors etc.


> PV Simulation

BSL series provides PV simulation software and can be used to simulate IV curves of various solar panels, under various temperature and irradiance condition, and conduct static and dynamic MPPT tests according to EN 50530:2010. MPP Update Rate: 200Hz. Irradiance levels: $0 \sim 1500 \text{ W/m2}$. Temperature: $-10 \sim +100^{\circ}\text{C}$. Temperature coefficient: $+1\% \sim -1\%$ /°C.

> Block Diagram

> Graphical User Interface

GUI software is installed in front touch panel, which uses Windows OS. The software provides following functions:

- Output settings and limits
- Sequence output settings
- Display measurements: voltage, current, power, etc.
- Capture, display and save output voltage and current waveforms
- Display power source faults

Output Ranges

AC Input	
AC input Voltage	3P+N+PE, 380VLL±10%(std)
Frequency	47-63Hz
Efficiency	≥90%
Power Factor	0.95
THDi	≤3%
Output	
Output Modes	CV, CC, CP and CR
Load Regulation	0.1%FS
Line Regulation	0.1%FS
Voltage Ripple	0.2%FS
Stability	0.2%FS
Current Rise Time (0%~90%)	<5ms
Current Rise Time(-90%~90%)	<10ms
Voltage Regulation Time (0-100% Load change)	<5ms
Power Accuracy	0.3%FS
Voltage Accuracy	0.1%FS
Current Accuracy	0.1%FS
Power Resolution	0.1kw
Voltage Resolution	0.1V
Current Resolution	0.1A
Measurements	
Measurement accuracy Power	0.3%FS
Measurement accuracy Voltage	0.1%FS
Measurement accuracy Current	0.1%FS
Others	
Standard Interface	LAN/RS485
Protection	OVP,OCP.OPPOTP
CE Conformity	EN 62040-1,EN 62040-2
Protection Leve	IP21
Cooling	Forced Air Cooling
Temperature	Operating: 0~40°C,Storage:-20~85°C
Operating Humidity	20-90%RH(None Condensing)

Standard Models Specification

Model	Power	Voltage	Current	Dimension (W*D*H mm)	Weight(kg)
BSL 100-1000-200	100kW	1000V	200A	800*900*1900	1200
BSL 100-1000-300	100kW	1000V	300A	800*900*2100	1300
BSL 100-1000-400	100kW	1000V	400A	800*900*2200	1400
BSL 100-1500-133	100kW	1500V	133A	800*900*2100	1150
BSL 100-1500-200	100kW	1500V	200A	800*900*2100	1200
BSL 100-1500-266	100kW	1500V	266A	800*900*2200	1300
BSL 100-2000-100	100kW	2000V	100A	800*900*2100	1150
BSL 100-2000-150	100kW	2000V	150A	800*900*2100	1200
BSL 100-2000-200	100kW	2000V	200A	800*900*2200	1300
BSL 150-1000-300	150kW	1000V	300A	1000*900*1900	1400
BSL 150-1000-450	150kW	1000V	450A	1000*900*2100	1500
BSL 150-1000-600	150kW	1000V	600A	1000*900*2200	1600
BSL 150-1500-200	150kW	1500V	200A	1000*900*1900	1300
BSL 150-1500-300	150kW	1500V	300A	1000*900*2100	1400
BSL 150-1500-400	150kW	1500V	400A	1000*900*2200	1500
BSL 150-2000-150	150kW	2000V	150A	1000*900*1900	1300
BSL 150-2000-225	150kW	2000V	225A	1000*900*1900	1300
BSL 150-2000-300	150kW	2000V	300A	1000*900*2100	1400
BSL 200-1000-400	200kW	1000V	400A	1000*900*1800	1700
BSL 200-1000-600	200kW	1000V	600A	1000*900*2000	1850
BSL 200-1000-800	200kW	1000V	800A	1000*900*2200	2000
BSL 200-1500-266	200kW	1500V	266A	1000*900*1800	1600
BSL 200-1500-400	200kW	1500V	400A	1000*900*1800	1700
BSL 200-1500-533	200kW	1500V	533A	1000*900*2200	1800
BSL 200-2000-200	200kW	2000V	200A	1000*900*1800	1600
BSL 200-2000-300	200kW	2000V	300A	1000*900*1800	1680
BSL 200-2000-400	200kW	2000V	400A	1000*900*1800	1700
BSL 250-1000-500	250kW	1000V	500A	1000*900*2000	1900
BSL 250-1000-750	250kW	1000V	750A	1000*900*2200	2100

Model	Power	Voltage	Current	Dimension (W*D*H mm)	Weight(kg)
BSL 250-1000-1000	250kW	1000V	1000A	1800*900*2200	2300
BSL 250-1500-333	250kW	1500V	333A	1800*900*1800	1800
BSL 250-1500-500	250kW	1500V	500A	1800*900*2000	1900
BSL 250-1500-666	250kW	1500V	666A	1800*900*2200	2100
BSL 250-2000-250	250kW	2000V	250A	1800*900*1800	1800
BSL 250-2000-375	250kW	2000V	375A	1800*900*1800	1800
BSL 250-2000-500	250kW	2000V	500A	1800*900*2000	1900
BSL 300-1000-600	300kW	1000V	600A	1900*1000*2200	2400
BSL 300-1000-900	300kW	1000V	900A	2800*1000*2200	2600
BSL 300-1000-1200	300kW	1000V	1200A	2800*1000*2200	2800
BSL 300-1500-400	300kW	1500V	400A	1900*1000*2200	2300
BSL 300-1500-600	300kW	1500V	600A	1900*1000*2200	2400
BSL 300-1500-800	300kW	1500V	800A	2800*1000*2200	2550
BSL 300-2000-300	300kW	2000V	300A	1900*1000*2200	2300
BSL 300-2000-450	300kW	2000V	450A	1900*1000*2200	2300
BSL 300-2000-600	300kW	2000V	600A	1900*1000*2200	2400

Note: Total weight < 1400KG, the cabinet bottom is wheel structure; otherwise, it is channel steel structure.

> AC Input Configuration¹

Please specify the input voltage (L-L)
/380, Input Voltage 380VLL±10%, 3P+N+PE/3P+PE
/400, Input Voltage 400VLL±10%, 3P+N+PE/3P+PE
/480, Input Voltage 480VLL±10%, 3P+N+PE/3P+PE

> Model Configuration

BSL AAA-BBB-CCC/DDD

AAA: Power, kW

BBB: Voltage range, V

CCC: Current range, A

DDD: Input configuration

^{1.} Other AC input is available, please consult factory.

Notes

SANTRATEK SOLUTION Co., LTD (Tax ID: 0135568008743)

Address: 45/6 Moo 5, Khlong Hok, Khlong Luang, Pathum Thani 12120

Email: sales@santratek-solution.com | Tel: +66(0) 63-817-5264

Website: https://www.santratek.com