รหัสสินค้า FK-FA1420

ชื่อสินค้า โมดูลรีเลย์ 1 ช่อง

โมดูลชุดนี้ เป็นโมดูลที่ใช้สำหรับในการทดลองเกี่ยวกับการควบคุมตัวรีเลย์ เพื่อใช้สำหรับเป็นพื้นฐานในการ เขียนโปรแกรมการควบคุม โมดูลนี้สามารถดัดแปลงและพัฒนาสู่วงจรอื่นๆ ในรูปแบบต่างๆ เช่น วงจรตั้งเวลาควบคุม เครื่องใช้ไฟฟ้า เป็นต้น

คุณสมบัติของบอร์ด

1.ใช้แหล่งจ่ายไฟจากบอร์ดไมโครคอนโทรลเลอร์ได้โดยตรง (สำหรับชุดรีเลย์ สามารถเลือกต่อแหล่งจ่ายไฟตรง ขนาด 12 โวลท์ จากภายใน (จากบอร์ด Arduino) หรือภายนอกได้)

2.สามารถใช้กับบอร์ดไมโครคอนโทรลเลอร์ได้ เช่น บอร์ด Arduino UNO R3 เป็นต้น

3.ภายในวงจรประกอบด้วยวงจรรีเลย์ จำนวน 1 ชุด

4.ขนาดแผ่นวงจรพิมพ์ : 2.32**x**0.91 นิ้ว

การทำงานของวงจร

ตัววงจรจะประกอบไปด้วยออปโต้ทรานซิสเตอร์ ทำหน้าที่เป็นตัวขับให้รีเลย์ทำงาน ซึ่งการควบคุม จะทำผ่านขา CH ของวงจร FK1420 อุปกรณ์อีกตัวหนึ่งก็คือ ตัวรีเลย์ ซึ่งตัวรีเลย์นี้เป็นรีเลย์ขนาด 12 โวลท์ดีซี โดยแหล่งจ่ายไฟที่นำมา จ่ายให้กับตัวรีเลย์นี้ สามารถเลือกได้ 2 กรณี คือ ในกรณีที่ใช้แหล่งจ่ายไฟจากบอร์ด Arduino (ต่ออะแดปเตอร์ไฟตรง ขนาด 12 โวลท์ เข้าที่บอร์ด Arduino) ให้ทำการจั๊มตัวจั๊มเปอร์ที่จุด J+ และ JG ส่วนที่ขา + ที่วงจร FK1420 ให้ต่อกับจุด Vin ของบอร์ด Arduino และขา G ต่อกับจุด GND ของบอร์ด Arduino แต่ในกรณีที่ใช้แหล่งจ่ายไฟตรง ขนาด 12 โวลท์ จากภายนอก ให้ทำการถอดตัวจั๊มเปอร์ออกจากจุด J+ และ JG แล้วจึงทำการต่อแหล่งจ่ายไฟตรง ขนาด 12 โวลท์ จาก ภายนอก ที่บอร์ด FK1420 ที่จุด 12V ใกล้กับตัวรีเลย์

รูปที่ 1 แสดงวงจรบอร์ดทดลอง FK1420

การประกอบวงจร

รูปการลงอุปกรณ์ แสดงไว้ในรูปที่ 2 ในการประกอบวงจร ควรจะเริ่มจากอุปกรณ์ที่มีความสูงที่น้อยที่สุดก่อน เพื่อความสวยงามและการประกอบที่ง่าย โดยเริ่มจากตัวต้านทานและไล่ความสูงไปเรื่อยๆ สำหรับตัว LED ควรระมัดระวัง ในการใส่ ก่อนการใส่อุปกรณ์เหล่านี้จะต้องให้ขั้วที่แผ่นวงจรพิมพ์กับตัวอุปกรณ์ให้ตรงกัน วิธีการดูขั้วและการใส่อุปกรณ์ นั้น ได้แสดงไว้ในรูปที่ 3 แล้ว ในการบัดกรีให้ใช้หัวแร้งขนาดไม่เกิน 40 วัตต์ และใช้ตะกั่วบัดกรีที่มีอัตราส่วนของดีบุกและ ตะกั่วอยู่ระหว่าง 60/40 รวมทั้งจะต้องมีน้ำยาประสานอยู่ภายในตะกั่วด้วย หลังจากที่ได้ใส่อุปกรณ์และบัดกรีเรียบร้อย แล้ว ให้ทำการตรวจสอบความถูกต้องอีกครั้ง เพื่อให้เกิดความมั่นใจแก่ตัวเราเอง แต่ถ้าเกิดใส่อุปกรณ์ผิดตำแหน่ง ควรใช้ที่ ดูดตะกั่วหรือลวดซับตะกั่ว เพื่อป้องกันความเสียหายที่อาจจะเกิดกับลายวงจรพิมพ์ได้

รูปที่ 2 แสดงการตำแหน่งการใส่อุปกรณ์ลงบนแผ่นวงจรพิมพ์และลายแผ่นวงจรพิมพ์

รูปที่ 3 การใส่อุปกรณ์ลงบนแผ่นวงจรพิมพ์

อุปกรณ์ที่ใช้ในการเขียนโปรแกรมเพื่อทดสอบบอร์ด

1. FK-FA1420 โมดูลรีเลย์ 1 ช่อง	จำนวน	1	บอร์ด
2.อะแดปเตอร์ ขนาด 12 โวลท์ 500 มิลลิแอมป์	จำนวน	1	ตัว
3.บอร์ดไมโครคอนโทรลเลอร์ เช่น บอร์ด Arduino UNO R3	จำนวน	1	บอร์ด
4.สาย USB	จำนวน	1	เส้น
5.คอมพิวเตอร์	จำนวน	1	เครื่อง
6.โปรแกรมที่ใช้ในการเขียนคำสั่ง (ในที่นี้ใช้โปรแกรม Arduino)	จำนวน	1	โปรแกรม

การทดสอบบอร์ด Arduino UNO R3

1.ทำการต่อสาย USB เข้ากับพอร์ต USB ของคอมพิวเตอร์และพอร์ต USB ของบอร์ด Arduino UNO R3

บริษัท ฟีวเจอร์กิท มาร์เก็ตติ้ง จำกัด 25 ซ.โพธิ์แก้ว 3 กลองจั่น บางกะปี กรุงเทพฯ 10240 โทรศัพท์ 0-29497366-7 โทรสาร 0-2949-7369 เว็บไซก์ www.futurekit.com

รูปที่ 4 แสดงการต่อสาย USB กับบอร์ด Arduino

2.เปิดโปรแกรม Arduino โดยการดับเบิ้ลคลิ๊กที่ไอคอน arduino จากนั้นเรียกโปรแกรม TEST ในโฟเดอร์ EX โดยเข้าไปที่ File จากนั้นเลือก Open เข้าไปที่โฟเดอร์ EX แล้วเลือกโฟเดอร์ TEST คลิ๊กเลือกไฟล์ TEST

รูปที่ 5 แสดงการเปิดโปรแกรม Arduino

e Edit Sketch T	Tools Help	Open an Arduino si	etch			2
New	Ctrl+N	Look in: 🚞	Test	~	0000	
Open Sketchbook Examples Close Save Save As	Ctrl+O Ctrl+W Ctrl+S Ctrl+Shift+S	My Recent Documents Desktop	est.ino			
Upload Upload Using Progra Page Setup Print	Ctrl+U ammer Ctrl+Shift+U Ctrl+Shift+P Ctrl+P	My Documents				
Preferences Quit	Ctrl+Comma Ctrl+Q	My Computer				
		File r	name: Test.ino		*	Open
		My Network Files	of type: All Files (*.*	7	~	Cancel

รูปที่ 6 แสดงการเรียกโปรแกรม TEST

3.ทำการโหลดโปรแกรม TEST ลงไปยังบอร์ด Arduino

รูปที่ 7 แสดงการโหลดโปรแกรม TEST

4.เมื่อโหลดโปรแกรมเสร็จ สังเกตที่บอร์ด Arduino จะเห็นตัว LED L ที่อยู่บนบอร์ดกระพริบ แสดงว่า บอร์ด Arduino พร้อมใช้งาน

รูปที่ 8 แสดงตำแหน่ง LED L บนบอร์ด Arduino

รายละเอียดโปรแกรม TEST โปรแกรมไฟกระพริบ ทดสอบบอร์ด Aduino UNO R3

void setup() {	
pinMode(13, OUTPUT);	// กำหนดให้ขา 13 เป็นขา OUTPUI
}	
void loop() {	
digitalWrite(13, HIGH);	// กำหนดให้ LED ขา 13 ติด
delay(1000);	// หน่วงเวลา 1 วินาที
digitalWrite(13, LOW);	// กำหนดให้ LED ขา 13 ดับ
delay(1000);	// หน่วงเวลา 1 วินาที
}	

การต่อวงจรเข้ากับบอร์ด Arduino UNO R3

ทำการเสียบบอร์ด FK1420 เข้ากับบอร์ด Arduino UNO R3 ตามรูปที่ 9 โดยจุด CH ต่อเข้าที่พอร์ต 13, จุด + ต่อเข้าที่ Vin และจุด G ต่อเข้าที่ GND

รูปที่ 9 แสดงการประกอบบอร์ด FK1420 กับบอร์ด Arduino UNO R3

รูปที่ 10 แสดงการต่อพ่วงบอร์ด FK1420 หลายๆ ตัว

การเขียนโปรแกรม

1.ทำการต่อบอร์ด Arduino UNO R3 เข้ากับบอร์ดทดลอง ตามหัวข้อ <mark>การต่อวงจรเข้ากับบอร์ด Arduino</mark> UNO R3 จากนั้นทำการจั๊มตัวจั๊มเปอร์เข้าที่จุด J+ และ JG แล้วจึงเสียบอะแดปเตอร์ เข้าที่บอร์ด Arduino

รูปที่ 11 แสดงการจั๊มตัวจั๊มเปอร์ที่ตำแหน่ง J+ และ G

2.ต่อสาย USB เข้ากับพอร์ต USB ของคอมพิวเตอร์และพอร์ต USB ของบอร์ด Arduino UNO R3

รูปที่ 12 แสดงการต่อสาย USB

3.เปิดโปรแกรม Arduino โดยการดับเบิ้ลคลิ๊กที่ไอคอน arduino จากนั้นเรียกโปรแกรม LAB1420-1 ในโฟ เดอร์ EX โดยเข้าไปที่ File จากนั้นเลือก Open เข้าไปที่โฟเดอร์ EX แล้วเลือกโฟเดอร์ FK1420 แล้วเข้าที่โฟเดอร์ LAB1420-1 คลิ๊กเลือกไฟล์ LAB1420-1

รูปที่ 13 แสดงการเปิดโปรแกรม Arduino

บริษัท ฟิวเจอร์ลิท มาร์เก็ตติ้ง จำกัด 25 ซ.โพธิ์แก้ว 3 คลองจั่น บางกะปี กรุงเทพฯ 10240 โทรศัพท์ 0-29497366-7 โทรสาร 0-2949-7369 เว็บไซค์ www.futurekit.com

Edit Sketch Tools	Help						
New	Ctrl+N	Look in:	C LAB1420-1		<u>×</u> () Ø 🖻 🖽	•
Open	Ctrl+O		LAB1420-1.ir	or			
Sketchbook	•						
Examples		My Hecent Documents					
Close	Ctrl+W						
ave	Ctrl+S						
ave As	Ctrl+Shift+S	Desktop					
Ipload	Ctrl+U						
Upload Using Programmer	Ctrl+Shift+U						
age Setup	Ctrl+Shift+P	My Documents					
Print	Ctrl+P						
Preferences	Ctrl+Comma						
Quit	Ctrl+Q	My Computer					
			File name:	LAB1420-1.ino		~	Open
		MuNetwork	Files of tupe:	All Files (* *)		~	Cance

รูปที่ 14 แสดงการเรียกโปรแกรม LAB1420-1

4.ทำการโหลดโปรแกรม LAB1420-1 ลงไปยังบอร์ด Arduino เมื่อโหลดโปรแกรมเสร็จ เราจะได้ยินเสียงรีเลย์ ทำงานและหยุดทำงานสลับกันไป พร้อมกับ LED-IN และ LED-RY ติดและดับตามไปด้วย แสดงว่าวงจรรีเลย์พร้อมใช้งาน ได้

รูปที่ 15 แสดงการโหลดโปรแกรม LAB1420-1

5.ทำการจั้มตัวจั้มเปอร์ ที่ตำแหน่ง JP2 ไปทางตำแหน่ง A จากนั้นทำการโหลดโปรแกรม LAB1420-2 ลงไปยัง บอร์ด Arduino เมื่อโหลดโปรแกรมเสร็จ ทดสอบวงจร โดยการปรบมือหรือส่งเสียงที่บริเวณไมค์ สังเกตตัว LED จะติด แล้วซักพักก็จะดับ ถ้ามีการปรบมือหรือส่งเสียงที่บริเวณไมค์อีกครั้ง ตัว LED ก็จะติดอีกครั้ง

รายละเอียดโปรแกรม LAB1420-1 โปรแกรมทดสอบการทำงานของรีเลย์

void setup() {

pinMode(A0, OUTPUT);	// กำหนดให้ขา A0 เป็นขา OUTPUT
}	
void loop() {	
digitalWrite(A0, HIGH);	// กำหนดให้วีเลย์ทำงาน
delay(1000);	// หน่วงเวลา 1 วินาที
digitalWrite(A0, LOW);	// กำหนดให้รีเลย์หยุดทำงาน
delay(1000);	// หน่วงเวลา 1 วินาที

}

การทำงานของโปรแกรม LAB1420-1

การทำงานจะเริ่มจากโปรแกรมจะทำการกำหนดขา A0 เป็นขา OUTPUT จากนั้นจะกำหนดให้ที่ขา A0 มี สถานะเป็น HIGH และ LOW สลับกันไป จนทำให้รีเลย์ทำงานและหยุดทำงานตามไปด้วย โดยรีเลย์จะทำงาน 1 วินาที และหยุดทำงาน 1 วินาที เมื่อทำงานเสร็จแล้ว ก็จะกลับไปเริ่มใหม่

หมายเหตุ: ในกรณีที่ต้องการเปลี่ยนระยะเวลาในการทำงานหรือหยุดทำงาน สามารถลดเพิ่มค่าตัวเลขในวงเล็บ ที่คำสั่ง delay ได้ โดยหน่วยของตัวเลขนี้คือ มิลลิวินาที