

3D VISION SENSORS MOST ECONOMIC AND COMPACT 3D SENSOR IN IT'S CLASS FOR ACCURATE 3D VISION & METROLOGY APPLICATIONS

ABOUT US... ABOUT THE COMPANY

SmartRay is a leading 3D Sensor company for Vision and Metrology applications; helping manufacturing companies to improve product quality, guide automation and reduce production costs. By focusing only on 3D, SmartRay has built a comprehensive portfolio of products that combine new technologies with German engineering to create a range of 3D sensors that can be fitted anywhere, are quick to set up and easy to deploy.

VISION. METROLOGY.

IMPROVE. PRODUCT QUALITY

WE LIVE 3D

SMALL SIZE LIGHTWEIGHT **ROBUST** HOUSING **ECONOMIC PRICE**

HEAD OFFICE. MUNICH

Headquartered in Munich, Germany, SmartRay also has operations in China and expanding global coverage through a network of distributors and system integrators. For more details, visit SmartRay at www.smartray.com

REDUCE. PRODUCTION COSTS

HIGH PERFORMANCE

SmartRay 3D Sensors combine laser triangulation with innovative image formation technology to create detailed 3D images that can be processed by any 3rd party vision software. The latest ECCO™ family brings a new design philosophy to the 3D sensor market that delivers high performance, small size, lightweight and robust housing at an economic price.

www.smartray.com

SmartRay **EC**onomic and **CO**mpact range of 3D Sensors, the ECCO™ family is revolutionising the 3D sensor market, combining high performance and great value in a family of economical, compact industrial products.

At SmartRay we focus on a number of core proprietary technologies that when deployed together redefine the 3D Sensor market. Here are just a few of the SmartRay innovations incorporated into our products:

INTEGRATED OPTICS

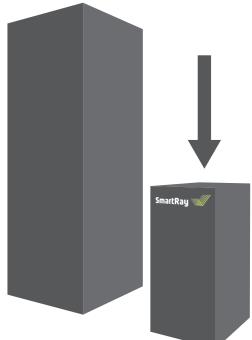
With optics and laser illumination included in every 3D Sensor, we have eliminated the need for lenses and lighting to be evaluated, tested and purchased for each application.

SmartRay

By incorporating the latest high resolution image sensors into our products, we can measure more accurately, detect smaller defects and control automation more precisely than other 3D Sensors.

RESOLUTION

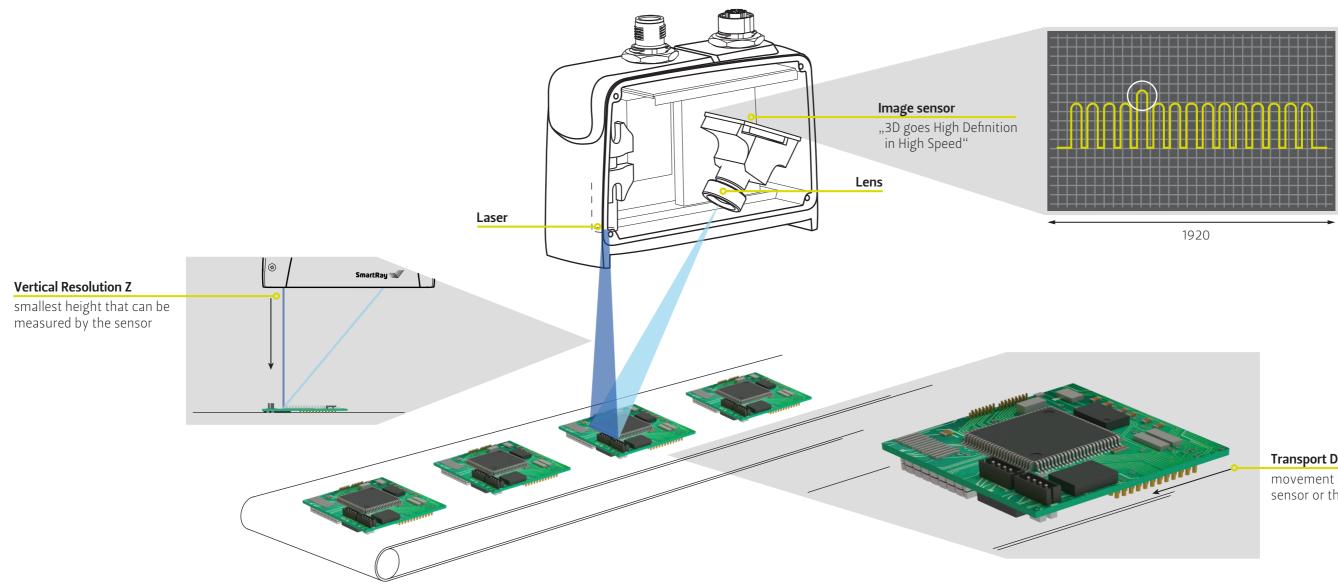
SOFTWARE INTEGRATION


To ensure our 3D Sensors can be used with as wide a range of vision software as possible, we have created a set of communication and set up software tools that are quick and easy to use.

Our unique filtering technology helps our 3D Sensors create high quality, reliable images of products with reflective surfaces that would otherwise be impossible to inspect or measure.

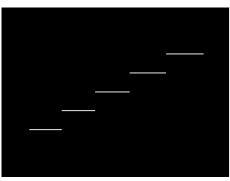
CALIBRATION

All our sensors are pre-calibrated, so they deliver precise, repeatable measurements, right down to the micrometer range, as soon as they are installed.

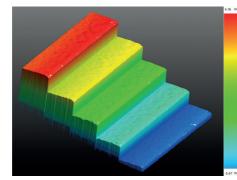

SIZE

By carefully miniaturising every component, we have created the smallest, lightest range of 3D Sensors available anywhere, so they are easier to fit on any production line.

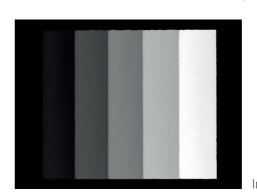
...ABOUT ECCO **ABOUT OUR PRODUCTS**


ECCO 3D SENSORS TECHNOLOGY

SmartRay 3D Sensors work based on the principle of laser triangulation. A laser line is projected onto the object, which is reflected back onto an image sensor. Due to the angle between the laser line and the image sensor, the reflected laser line appears at different positions in the image depending on the height of the object at each point. The 3D Sensor measures the profile of the object. Relative movement between the object and the 3D Sensor creates a full 3D model of the object.



Do more with SmartRay 3D[™]


SmartRay's 3D Sensors capture the Intensity and Laser Line Thickness information from your part. By using our 3D Sensors, you will also have the 2D information available. 3D = 2D + more!

To inspect and measure use the 3D PointCloud or the "Z-Maps". The height of the object is displayed in real mm.

Z-Map with 3D Visualization in mm

Intensity

Transport Direction X

movement of either the sensor or the object

Laser Line Thickness

ECCO FAMILY CHOOSING THE RIGHT SENSOR

ECCO 35 WHEN SIZE & PRICE IS VITAL

Entry-level 3D sensor series for simple applications when compact size and low price is vital

ECCO 75 FOR HIGH DEFINITION SCANNING

High-level 3D sensor series in HD (High Definition) for challenging applications demanding high resolution and repeatability

ECCO 95 FOR HIGH DEFINITION & HIGH SPEED

Premium 3D sensor series in HD and High Speed for challenging applications demanding ultra-high resolution, repeatability and high speed

ECCO 55 WHEN SIZE MATTERS IN HIGH SPEED

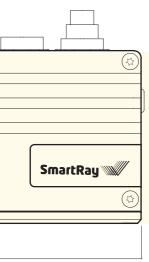
Mid-level 3D sensor series for standard applications demanding compact size and high speed

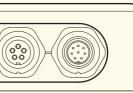
ECCO 95+ FOR GLASS & SPECULAR SURFACES

Specialized 3D sensor to measure flat glass and specular, highly reflective surfaces in high definition and high speed.

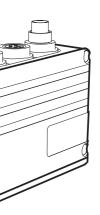
ECCO 35 | ECCO 55 SPECIFICATIONS

MODEL	ECCO 35.050	ECC0 35.100	
Typical field of view ¹ near mid far	41 49 57 mm	61 82 103 mm	
Measurement range ¹ Stand–off distance	60 mm 150 mm	100 mm 150 mm	
Typical vertical resolution (Z) 1 Typical lateral resolution (Y) 1	8.5 – 16.5 µm	11.5 – 32.5 µm	
Z–Linearity ^{2,5}	57 – 80 μm 0.02% (0.2 μm/mm)	82 – 135 μm 0.01% (0.1μm/mm)	
Z–Repeatability ^{4,5}	1.8 µm	3.8 µm	
Weight	Approx. 180 g	Approx. 180 g	
Part number	3.002.005	3.002.010	


ECC0 55.100	ECC0 55.050	ECC0 55.020	IODEL
88 118 148 mm	58 69 81 mm	22 24 26 mm	vpical field of view ¹ near mid far
100 mm	60 mm	20 mm	easurement range ¹
150 mm	150 mm	70 mm	and-off distance
19 - 53.5 μm	13.5 – 27 μm	3.25 – 4.75 μm	vpical vertical resolution (Z) ¹
136 - 228 μm	85 – 115 μm	35 – 40 μm	vpical lateral resolution (Y) ¹
0.01% (0.1μm/mm)	0.01% (0.1 μm/mm)	0.01% (0.1μm/mm)	-Linearity ^{2,5}
4.2 μm	1 μm	3.8 μm	-Repeatability ^{4,5}
Approx. 180 g	Approx. 180 g	Approx. 180 g	feight
3.002.110	3.002.105	3.002.095	art number

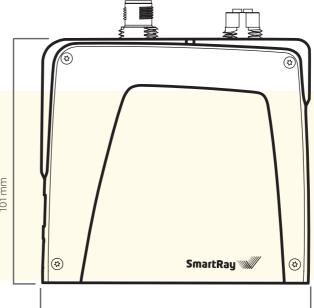

FIELD OF VIEW How wide is your part?

 \cap


- Typical values can vary up to 5% due to optical tolerances
 Z-Linearity calculated as a variation of "bias" (reference value vs. measured value) over the measurement range
 Scan rate & point rate are dependent on the configured field of view, measurement range and exposure time. A scan' by definition considers maximum points/3D profile i.e. full FOV. The typical scan/point rate range has been estimated considering an exposure time of 1 µsec, min-max MR and full FOV. The typical scan rate can be further boosted by windowing the FOV
 Experimentally assessed by scanning a fixed measurement rarget 4100 times successively within short time interval. No post-processing filters applied
 Measurements performed on a SmartRay standard artifact which is an aluminium flat matt surface painted matte white

82 mm

.100 .050 | ECCO 55.100


NEAR FIELD MID FIELD

FAR FIELD

MEASUREMENT RANGE How thick is your part?

ECCO 75 | ECCO 95 SPECIFICATIONS

MODEL		ECC0 75.030	ECC0 75.100	ECC0 75.200	
Typical field of vi	ew ¹ near mid far	34 36 38 mm	72 98 124 mm	125 190 250 mm	
Measurement rai	nge 1	16 mm	100 mm	250 mm	
Stand-off distand	ce	60 mm	150 mm	325 mm	
Typical vertical re	esolution (Z) ¹	1.4 – 1.8 µm	5 – 12 µm	12 – 50 µm	
Typical lateral res	solution (Y) ¹	18 – 20 µm	42 – 70 μm	66 – 138 µm	E
Z–Linearity ^{2,5}		0.01% (0.1µm/mm)	0.008% (0.08 /mm/mm)	0.01% (0.1µm/mm)	mm 101
Z-Repeatability ⁴	,5	0.8 µm	0.8 µm	2.5 μm	10
Weight		Approx. 480 g	Approx. 480 g	Approx. 480 g	
Part number	laser class 2M	3.002.121	3.002.120	3.002.124	
	laser class 3B	3.003.121	3.003.120	3.003.124	

MODEL

ECC0 95.010 ECC0 95.020 ECC0 95.040 ECC0 95.100

Typical field of vie	2W ¹ near mid far	10.5 11 11.5 mm	22 25 28 mm	34 36 38 mm	72 98 124 mm
Measurement rar	ige 1	5 mm	20 mm	16 mm	100 mm
Stand-off distance	e	23.5 mm	60 mm	60 mm	150 mm
Typical vertical re	esolution (Z) ¹	0.37 – 0.45 µm	1.1 – 1.6 µm	1.4 – 1.8 µm	5 – 12 µm
Typical lateral res	olution (Y) 1	5.8 – 6.8 µm	11.5 – 14.5 µm	18 – 20 µm	42 – 70 µm
Z–Linearity ^{2,5}		0.015% (0.015 µm/mm)	0.005% (0.005 µm/mm)	0.006% (0.006 µm/mm)	m/mmر 0.002% (0.002
Z-Repeatability 4,	5	0.1 µm	0.2 µm	0.4 µm	2 µm
Weight		Approx. 650 g	Approx. 650 g	Approx. 490 g	Approx. 490 g
Part number	laser class 2M	3.002.152	3.002.151	3.002.153	3.002.150
	laser class 3R	3.004.152	3.004.151	3.004.153	3.004.150
	laser class 3B	3.003.152	3.003.151	3.003.153	3.003.150

ШЦ 471

111 mm

ECCO 95.010 | ECCO 95.020

MODEL

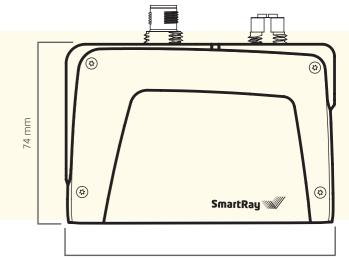
ECC0 95.200

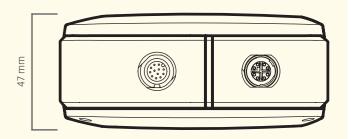
Typical field of vie	W ¹ near mid far	125 190 250 mm
Measurement ran	ge 1	250 mm
Stand-off distance	e	325 mm
Typical vertical re	solution (Z) 1	12 – 50 µm
Typical lateral reso	olution (Y) 1	66 – 138 µm
Z–Linearity ^{2,5}		0.015% (0.015 µm/mm)
Z–Repeatability 4,5		3.3 µm
Weight		Approx. 490 g
Part number	laser class 2M	3.006.154
	laser class 3R	3.008.154
	laser class 3B	3.007.154

MODEL

Typical field of vie	2W ¹ near mid far	11 12 11 mm
Measurement rar		5.6 mm
Stand-off distand	ce .	23.5 mm
Typical vertical re	0.42 – 0.54 µm	
Typical lateral res	mu 6.0 – 6.8	
Z–Linearity ^{2,5}		0.015% (0.015 µm/mm)
Z-Repeatability 4	,5	0.15 µm
Mounting distance	e	65 mm
Laser wavelength	า	450 nm (brillant blue laser)
Laser class	standard optional	3B
Maximum points	3D profile	1920
Weight		Approx. 775 g
Part number	laser class 3B	3.003.191

ECCO 95.015G


STAND-OFF DISTANCE Optimum distance between the sensor and your part


1 Typical values can vary up to 5% due to optical tolerances

- Typical values can vary up to 5% due to optical toterances
 Z-Linearity calculated as a variation of "bias" (reference value vs. measured value) over the measurement range
 Scan rate & point rate are dependent on the configured field of view, measurement range and exposure time. A scan' by definition considers maximum points/3D profile i.e. full FOV. The typical scan/point rate range has been estimated considering an exposure time of 1 µsec, min-max MR and full FOV. The typical scan rate can be further boosted by windowing the FOV
 Experimentally assessed by scanning a fixed measurement target 4100 times successively within short time interval. No post-processing filters applied
 Measurements performed on a SmartRay standard artifact which is an aluminium flat matt surface painted matte white

FIELD OF VIEW How wide is your part?

111 mm

ECC0 75.030 | ECC0 75.100 | ECC0 75.200 ECCO 95.040 | ECCO 95.100

MID FIELD

FAR FIELD

MEASUREMENT RANGE How thick is your part?

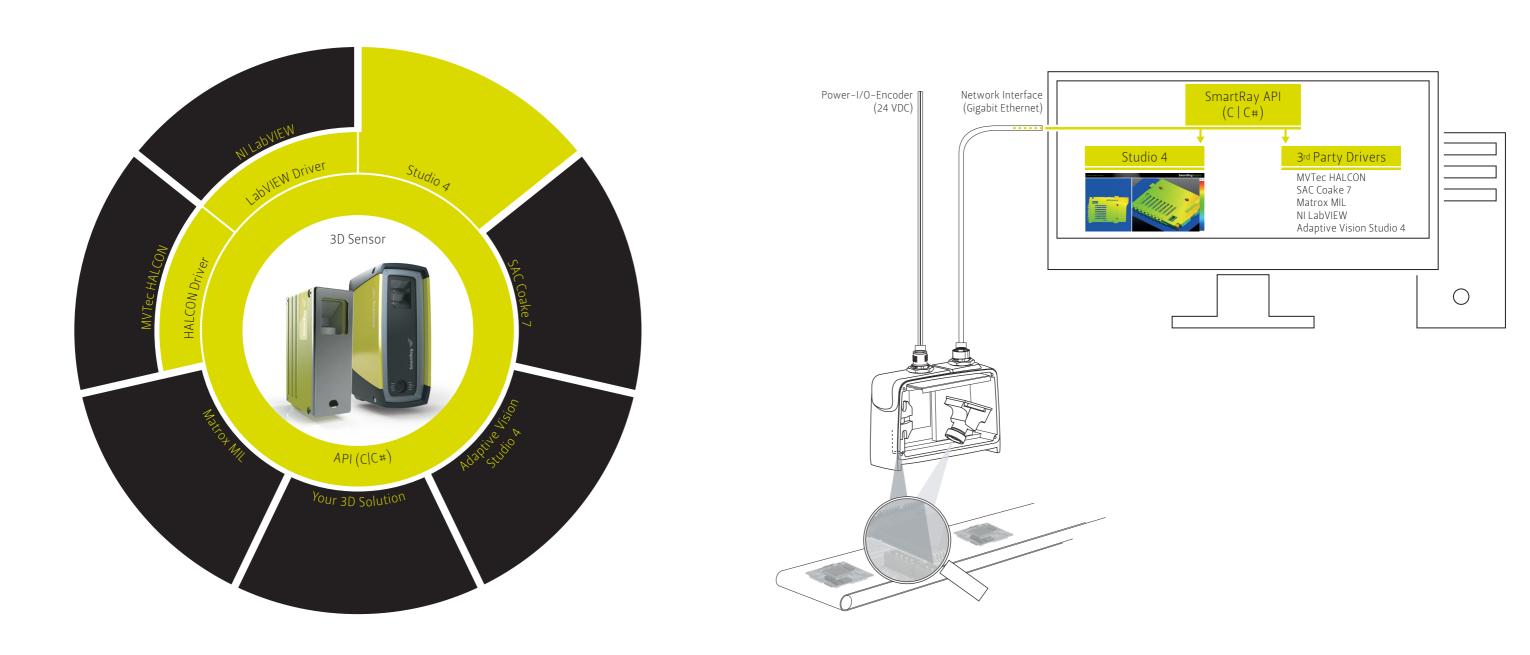
SMARTRAY DEVKIT (SDK) EASY TO GET STARTED

STANDARDIZED TERMINOLOGY

improved usability for programmers with clear and self explanatory function names & error codes MULTI-SENSOR SUPPORT EXTENSION

improvements in API to better support data acquisitioins & parameterization in a multi-sensor* 3D application *maximum number of sensors supported by API increased from 4 up to 64 sensors

3D DATA FORMAT SELECTOR


choose preferred 3d data format (PIL, ZIL) and seamlessly receive data without additional computation SYNCHRONOUS FUNCTION CALLS

rely on function return calls instead of asynchronous callbacks for most commonly used functions (Ex: Connect Sensor)

QUICK START WITH NEW API SAMPLE

save integration time using new "API Sample" which demonstrates ease of usage (source code available) BACKWARD COMPATIBLE

no need to modify existing/old software application as backward compatibility is ensured down to API 4.2.1.32

SMARTRAY GMBH Bürgermeister-Finsterwalder-Ring 12 82515 Wolfratshausen | Germany

www.smartray.com support@smartray.com T +49 (0) 8171 9683 4199