2005.6. Update B053G

MITSUBISHI CARBIDE TOOL

MİTSUBİSHİ

MITSUBISHI CARBIDE

Expanded

MINT series Insert **MMT** series for precise and efficient threading

'OOLS NEWS

New Threading Tools

Series expanded, additional M-class inserts with 3-D chip breakers

Tough new grade, **VP15TF** for G-class inserts

THREAD PITCH CROSS REFERENCE

Application			General r	nachining		Pipe fittings a for gas a		
Tuno		Partial Profile 60°	Partial Profile 55°	ISO Metric	American UN	Parallel Pipe Thread Whitworth for BSW, BSP	American NPT	
Туре		60°	55°	1/8P 60° 1/4P	1/8P 60° 1/4P	R=0.137P 55° R=0.137P	30° 30°	
Symbol		M UNC UNF	W	М	UNC UNF	G(PF)* W	NPT	
Holder	Pitch	mm (thread/inch)	thread/inch	mm	thread/inch	thread/inch	thread/inch	
MMT Holder	Full form	_	_	$\begin{array}{cccc} 0.5 & 2.5 \\ 0.75 & 3.0 \\ 1.0 & 3.5 \\ 1.25 & 4.0 \\ 1.5 & 4.5 \\ 1.75 & 5.0 \\ 2.0 \end{array}$	32 12 28 11 24 10 20 9 18 8 16 7 14 6 13 5	28 11 26 10 20 9 19 8 18 7 16 6 14 5 12	27 18 14 11.5 8	
.9.		_		MMT16ERCCISO-S OP11 MMTCCERCCISO OP13			MMTOEROONPT	
	Partial form	$\begin{array}{rrrr} 0.5 & -1.5(48-16) \\ 1.75-3.0(14-8) \\ 0.5 & -3.0(48-8) \\ 3.5 & -5.0(7-5) \end{array}$	48-16 14- 8 48- 8 7- 5	$\begin{array}{rrr} 0.5 & -1.5 \\ 1.75 - 3.0 \\ 0.5 & -3.0 \\ 3.5 & -5.0 \end{array}$	48-16 14- 8 48- 8 7- 5	-	-	
MMTEROCO-C		MMT16ER○60-S		MMTOERO060	MMTER60 © P13	_	_	
MMT Boring Bars	Full form	_	_	$\begin{array}{cccc} 0.5 & 2.5 \\ 0.75 & 3.0 \\ 1.0 & 3.5 \\ 1.25 & 4.0 \\ 1.5 & 4.5 \\ 1.75 & 5.0 \\ 2.0 \end{array}$	$\begin{array}{cccc} 32 & 12 \\ 28 & 11 \\ 24 & 10 \\ 20 & 9 \\ 18 & 8 \\ 16 & 7 \\ 14 & 6 \\ 13 & 5 \end{array}$	28 11 26 10 20 9 19 8 18 7 16 6 14 5 12	27 18 14 11.5 8	
		_		MMTOOIROOCISO-S 🗢 P12 MMTOOIROOCISO 🗢 P14		MMT16IROOW-S O P12 MMTOOIROOOW O P16	MMTOIROONPT	
MMTIRO ACO-SPO	Partial form	$\begin{array}{rrrr} 0.5 & -1.5(48-16) \\ 1.75-3.0(14-8) \\ 0.5 & -3.0(48-8) \\ 3.5 & -5.0(7-5) \end{array}$	14— 8 48— 8	$\begin{array}{r} 0.5 & -1.5 \\ 1.75 - 3.0 \\ 0.5 & -3.0 \\ 3.5 & -5.0 \end{array}$	48-16 14- 8 48- 8 7- 5	_	_	
MMTIROCACCO-SPO MMTIROCACIO-SPO MMTIROCACIO-SPO P10		MMT16IR○60-S		MMTOOIROO 60	MMTOOIROOG0 P14	_	_	

Steam, water	gas and pipes	Pipe couplings for food and fire fighting industries	Motion trar	nsmissions	Aircraft and aerospace	Oil an	d gas
Taper Pipe Thread BSPT	American NPTF	Round DIN 405	ISO Trapezoidal 30°	American ACME	UNJ	API Buttress Casing	API Round Casing & Tubing
R=0.137P 27.5° 27.5° 35° R=0.137P	30° 30°	R=0.22105P 30° R=0.23851 R=0.23851	30°	29° 0.3707P	1/8P 60° R=0.18042P	10° 3° ° +	30° 30° 30° - Ltr
R.Rc(PT) Rp(PS)	NPTF	Rd	Tr (TM)	ACME (TW)	UNJ	BCSG	CSG LCSG
thread/inch	thread/inch	thread/inch	mm	thread/inch	thread/inch	thread/inch	thread/inch
28 19 14 11	27 18 14 11.5 8	10 8 6 4	1.5 2.0 3.0 4.0 5.0	12 10 8 6 5	32 16 28 14 24 12 20 10 18 8	5	10 8
MMT16ERCCOBSPT-S C P11 MMTCCERCCOBSPT C P15	MMTOCEROCONPTF	MMTOCEROORD	MMTOOEROOTR P17	MMTOCEROCACME	MMTOEROOUNJ P17	MMT22ER050APBU	MMT16EROOAPRD
-	_	_	-	-	-	-	_
_	_	_	_	_	_	_	_
19 14 11	14 11.5 8	10 8 6 4	1.5 2.0 3.0 4.0 5.0	12 10 8 6 5	*	5	10 8
MMT16IRCCCBSPT-S O P12 MMTCCIRCCCBSPT O P16	MMTOIROONPTF P18	MMTOIRORD P16	MMTOIROOTR P18	MMTOIROCACME	_	MMT22IR050APBU	MMT16IROCAPRD
_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_

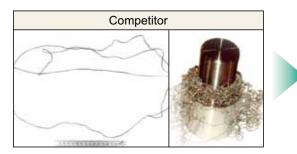
Note) When machining an internal UNJ thread, cut an internal hole with the appropriate diameter. Then machine with 60° American UN.

Note) When machining an internal ono timead, out an internal note with the appropriate diameter. This machinic in this case, a full form type insert cannot be used.
Note) For Pipe Threads, the list above contains both new and old symbols. Symbols in brackets are the old type. R: Male Taper Thread, Rc: Female Taper Thread, Rp: Female Parallel Thread
Female Parallel Thread defined with Rp(PS) is used for Male Taper Pipe Thread.

It is different from Female Parallel Pipe Thread defined with G(PF).

M-class inserts with 3-D chip breakers

Features


- Excellent chip control
- Prevents burrs and vibration
- With moulded identification markings for easy thread recognition

Cutting Performance

Chip control comparison

ISO metric external thread pitch 1.5mm Final pass (6th pass)

Ideal chip control even in the latter half of passes when continuous chips are usually produced.

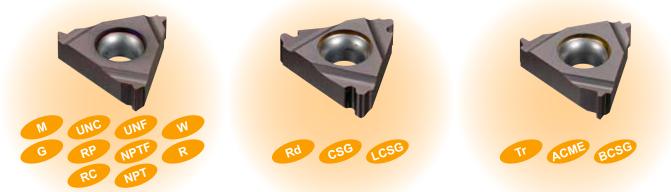
<Cutting conditions> Workpiece : JIS SCM440 Insert : MMT16ER150ISO-S Grade : VP15TF Cutting speed: 120m/min Cutting method : Radial infeed Depth of cut : Fixed cut area 6 times Pass Coolant : WET

Burr comparison

ISO metric external thread pitch 1.5mm (Enlarged views of incomplete threads at the initial stages of cutting)

Use of Mitsubishi's unique M-class sharp edge technology. The sharp edge eliminates burrs on incomplete threads.

<Cutting conditions> Workpiece : JIS SUS316 Insert : MMT16ER150ISO-S Grade : VP15TF Cutting speed: 100m/min Cutting method : Radial infeed Depth of cut : Fixed cut area Pass : 6 times Coolant : WET

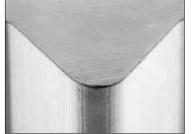

3

G-class ground insert

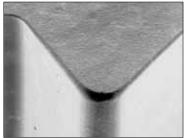
Features

A Wide Variety of Products

- · Mitsubishi Miracle Threading (MMT) series.193 inserts and 26 holders
- The MMT series allows the threading of a wide range of threads, from standard metric to threads for pipe couplings, gas and aerospace.


A higher level of precision than conventional inserts.

• The following tolerances can be achieved with the MMT series.


Thread Type	Threading Tolerance		
ISO Metric	6g / 6H		
American UN	2A / 2B		
Whitworth for BSW, BSP	Medium Class A		
BSPT	Standard BSPT		
Round DIN 405	7h / 7H		
ISO Trapezoidal 30°	7e / 7H		
American ACME	3G		
UNJ	3A		
API Buttress Casing	Standard API		
API Rounded Casing & Tubing	Standard API RD		
American NPT	Standard NPT		
American NPTF	Class2		

Long Tool Life with "Sharp" Cutting Edge

- · A "sharp" cutting edge lengthens tool life.
- A "sharp" cutting edge can be achieved with a small and uniform honing along the entire cutting edge.

MMT series insert ("Sharp" cutting edge)

Competitor's insert

Insert Selection

Choosing M-class inserts with 3-D chip breakers or G-class inserts

Insert	Chip control	Precision of thread	
G-class inserts	0	0	
M-class inserts with 3-D chip breakers	Ø	0	

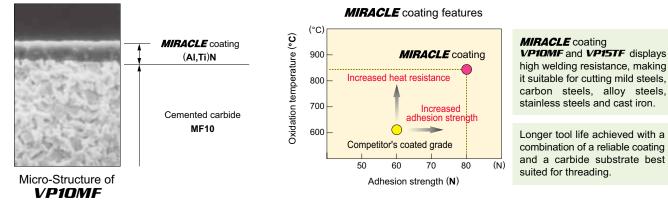
- For ideal chip control and a high cost performance ratio, M-class inserts with 3-D chip breakers are recommended.
- · G-class inserts are recommended where higher precision is required.

Features of VP10MF (G-class ground insert only)

Superior wear and plastic deformation resistance

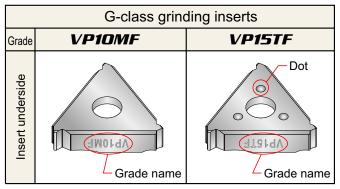
- High wear and plastic deformation resistance for threading when maintaining the thread form is important. Suitable for continuous high precision machining with extensive tool life.
- Effective in combination with G-class inserts for high precision threading.

Features of VP15TF


(G-class ground insert, M-class inserts with 3-D chip breakers)

Wide versatility

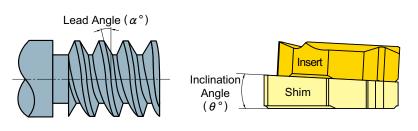
- High fracture resistance during low rigidity applications such as bar feed machining. Able to withstand harsh conditions for long periods where conventional inserts would be liable to breakage.
- · Effective combination of high cost performance M-class inserts with 3-D chip breakers.


Features of *MIRACLE* coating

MIRACLE coating

Grade markings on G-class inserts

An identifying mark printed on the side of the insert

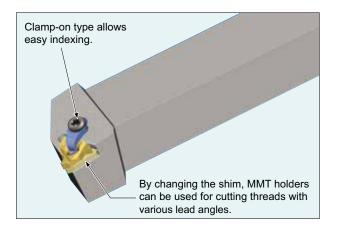

- VP15TF, G-class inserts have three dots embossed on the underside. (On the side "VP15TF" is printed.)
- **VP15TF**, G-class inserts have the grade name "**VP15TF**" printed on the side.

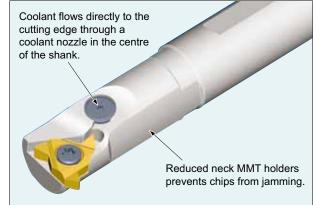
Note) M-class inserts with 3-D chip breakers have no dots, only the grade name marking.

Features of the new holders

Suitable for threading with a large lead angle.

- By changing only the shim, MMT holders can be used for turning of threads with various lead angles as well as the turning of left hand threads.
- Insert interference with the thread can be prevented to achieve a good surface finish.

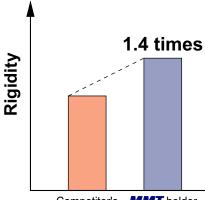



Lead Angle (α°)	Inclination Angle (θ°)
-1.5°	-3°
-0.5°	-2°
0.5°	-1°
1.5°	0°
2.5°	1°
3.5°	2°
4.5°	3°

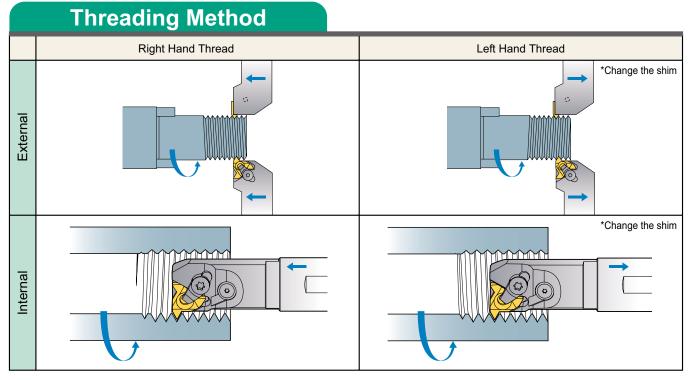
Delivered with the holder.

Internal threading holder with through coolant

- Efficient coolant supply to the cutting point lengthens the life of an insert.
- \cdot Smooth chip discharge, the key to efficient internal threading can be achieved.



Use of special surface treatment


· Higher corrosion and friction resistance and longer tool life than conventional products.

Greatly increased rigidity

• Small diameter internal threading holder achieved approximately 1.4 times higher rigidity than a conventional product.

Competitor's MMT holder

- Usually, threads are cut with the feed towards the chuck.
- When machining left hand threads, note that clamping rigidity is lowered due the application of back turning.
 When machining left hand threads, the lead angle is negative. Ensure an appropriate lead angle by changing the shim.

Insert Type		
Partial Form	Full Form	Semi Full Form (Trapezoidal threads only)
 The same insert can be used for a range of pitches. Shorter tool life because the nose radius of the insert is smaller than that of the wiper insert. Finishing with another operation is necessary. 	 No de-burring needed after threading. Requires different threading inserts. 	 No de-burring needed after threading. Requires different threading inserts. Finishing with another operation is necessary.
Crest Radius (Additional turning necessary to finish the thread crest.) Finished Surface Pre-finished Surface Feed Direction	Crest Radius (Wiped/finished surface.) Finished Surface Pre-finished Surface Feed Direction	Crest Radius (Additional turning necessary to finish the thread crest.) Finished Surface Pre-finished Surface Feed Direction

Pipe threads and tool selection

Thread Type	Number of threads	Standard internal diameter
G1/16	28	6.561
G1/8	20	8.556
G1/4	19	11.445
G3/8	19	14.950
G1/2		18.631
G5/8	14	20.587
G3/4	14	24.117
G7/8		27.877
G1		30.291
G1·1/8	11	34.939
G1·1/4	1	38.952

Parallel Pipe Threads G(PF)

Note) Same as PF.

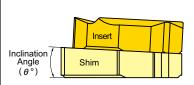
Taper Pipe Threads R, Rc(PT)

Thread Type	Number of threads	Standard internal diameter
R1/16	28	6.561
R1/8	20	8.556
R1/4	19	11.445
R3/8	19	14.950
R1/2	14	18.631
-	_	_
R3/4	14	24.117
-	_	-
R1	11	30.291
-	—	—
R1·1/4	11	38.952

Note) Same as Rc and PT.

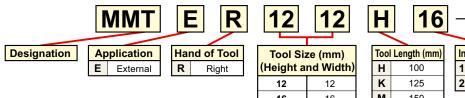
• The pitch is pre-determined for each nominal diameter. Note the minimum machining diameter especially when internal threading.

MMTE HOLDER


HOLDE	RS													
MMTE		(External th	read	ling)										
			1.5° {						L1			(Refer to pa	Z1 L1 ails of position ges 11-18 for s ht hand tool h	size Z1 , Z2)
Order Number	Stock	Insert Number		D	imensi	ons (n	nm)		P		\bigcirc	Ommun		
	R		H1	в	L1	L2	H2	F1	Clamp Bridge	Clamp Screw	Stop Ring	Shim Screw	Shim *	Wrench
MMTER1212H16-C	•		12	12	100	25	12	16	SETK51	SETS51	CR4	HFC03008	CTE32TP15	①TKY15F ②HKY20R
1616H16-C	•		16	16	100	25	16	20	SETK51	SETS51	CR4	HFC03008	CTE32TP15	①TKY15F ②HKY20R
2020K16-C	•	MMT16ER	20	20	125	26	20	25	SETK51	SETS51	CR4	HFC03008	CTE32TP15	①TKY15F ②HKY20R
2525M16-C	•	00000	25	25	150	28	25	32	SETK51	SETS51	CR4	HFC03008	CTE32TP15	①TKY15F ②HKY20R
3232P16-C	•		32	32	170	32	32	40	SETK51	SETS51	CR4	HFC03008	CTE32TP15	①TKY15F ②HKY20R
MMTER2525M22-C	•		25	25	150	32	25	32	SETK61	SETS61	CR5	HFC04010	CTE43TP15	①TKY20F ②HKY25R
3232P22-C	•	MMT22ER	32	32	170	32	32	40	SETK61	SETS61	CR5	HFC04010	CTE43TP15	①TKY20F ②HKY25R
4040R22-C	•		40	40	200	38	40	50	SETK61	SETS61	CR5	HFC04010	CTE43TP15	①TKY20F ②HKY25R

* Select and use a shim as shown below (sold separately), dependant on the lead angle.

SHIM


Lead Angle		Stock	Inclination Angle	Applicable
(α°)	Order Number	R	(θ°)	Holder
-1.5°	CTE32TN15	•	-3°	
-0.5°	N05	•	-2°	
0.5°	P05	•	-1°	MMTER
1.5°	P15		0°	00000
2.5°	P25	•	1°	16-C
3.5°	P35	•	2°	
4.5°	P45	•	3°	

Lead Angle (α°)	Order Number	Stock R	Inclination Angle (θ°)	Applicable Holder
-1.5°	CTE43TN15	٠	-3°	
-0.5°	N05	•	-2°	
0.5°	P05	•	-1°	MMTER
1.5°	P15		0°	00000
2.5°	P25	•	1°	22-C
3.5°	P35	•	2°	
4.5°	P45	•	3°	

Standard shim delivered with the holder.

IDENTIFICATION

Tool Size (mm) (Height and Width)					
12	12				
16	16				
20	20				
25	25				
32	32				
40	40				

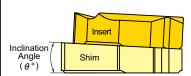
Tool	Tool Length (mm)										
Н	100										
Κ	125										
М	150										
Ρ	170										
R	200										

-	C								
Inse	rt Size (mm)	Method of Holding							
16	9.525	С	Clamp-on						
22	12.7								

RECOMMENDED CUTTING CONDITIONS

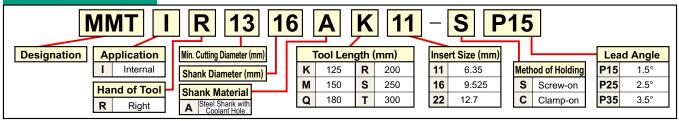
	Workpiece	Hardness	Grade	Cutting Speed (m/min)
Ρ	Mild Steel	≤180HB	VP10MF VP15TF	<u>150 (70-230)</u> 100 (60-140)
	Carbon Steel / Alloy Steel	180-280HB	VP10MF VP15TF	140 (80-200) 100 (60-140)
М	Stainless Steel	≤200HB	VP10MF VP15TF	<u>130 (80 - 180)</u> 80 (40 - 120)
Κ	Cast Iron	Tensile Strength ≤350MPa	VP10MF VP15TF	140 (80-200) 90 (60-120)

				() ()
	Workpiece	Hardness	Grade	Cutting Speed (m/min)
0	Heat-Resistant Alloy		VP10MF	45 (15-70)
3	Heat-Resistant Alloy	-	VP15TF	30 (20-40)
	Titanium Alloy		VP10MF	60 (40-80)
		-	VP15TF	45 (25-65)
1.1	Heat-Treated Alloy	45-55HRC	VP10MF	50 (30-70)
	rieat-rieateu Alloy	40-00HRC	VP15TF	40 (20-60)


MMTI TYPE BORING BARS

HOLDER	RS															
MMTI		(Intern	al thr	ead	ing)											
	-		5 0	Fig 2	- 1 (Scre	w-on	type)						Fig 2 (S	crew-on typ))	
			, i				type/									
			<u>ــــــــــــــــــــــــــــــــــــ</u>		·j	-								9 <u>F</u> F		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													_			
													of position d			
	L		_+5	66				_ [‡]				Ú		(Refer to	pages 11-	
v	\sim		т <mark>і</mark>	L3		.1	_	τ	L	3			¹ +	for size	Z1, Z2)	
		øD1	1		L	-1	-			³→ L1			Rig	ht hand too	ol holder or	nly.
	З		Angle				,	,	Min. Cutting							
Order Number	Stock	Insert	Insert 🛱			Dimensions (mm)			Diameter	GU		\mathbb{S}	and the second			Fig.
	R	Number	Lead	D4	L1	L3	F1	H1	(mm) D1	Clamp Bridge	Clamp Screw	Stop Ring	Shim Screw	Shim *	Wrench	
MMTIR1316AK11-SP15	•		1.5°	16	125	25	8.7	15	13	-	TS25	_	_	_	①TKY08F	1
1316AK11-SP25	•		2.5°	16	125	25	8.7	15	13	-	TS25	_	_	-	①TKY08F	1
1316AK11-SP35	•	MMT11IR	3.5°	16	125	25	8.7	15	13	-	TS25	-	-	-	①TKY08F	1
1516AM11-SP15	•	00000	1.5°	16	150	32	9.7	15	15	-	TS25	-	-	-	①TKY08F	1
1516AM11-SP25	•		2.5°	16	150	32	9.7	15	15	-	TS25	-	-	-	①TKY08F	1
1516AM11-SP35	•		3.5°	16	150	32	9.7	15	15	—	TS25	—	_	-	①TKY08F	1
MMTIR1916AM16-SP15	•		1.5° 2.5°	16 16	150	40 40	12.2 12.2	15 15	19 19	-	CS350860T	-	_	-	①TKY15F	2
1916AM16-SP25 1916AM16-SP35	•	MMT16IR	2.5 3.5°	16	150 150	40 40	12.2	15	19	-	CS350860T CS350860T	_	_	-	①TKY15F ①TKY15F	2
2420AQ16-C	•		1.5°	20	180	40	14.2	19	24	SETK51	SETS51	CR4		CTI32TP15	1TKY15F 2HKY20R	3
2925AS16-C	•	00000	1.5°	25	250	60	16.7	23.4	29	SETK51	SETS51	CR4			1 TKY15F 2 HKY20R	3
3732AS16-C	•		1.5°	32	250	48	20.5	30.4	37	SETK51	SETS51	CR4		CTI32TP15	1 TKY15F 2 HKY20R	4
MMTIR2420AQ22-SP15	•		1.5°	20	180	50	15.5	19	24	_	TS43	_	_	_	①TKY15F	2
2420AQ22-SP25	•		2.5°	20	180	50	15.5	19	24	-	TS43	-	-	-	①TKY15F	2
2420AQ22-SP35	٠	MMT22IR	3.5°	20	180	50	15.5	19	24	-	TS43	-	-	-	①TKY15F	2
3025AR22-C	•	00000	1.5°	25	200	38	17.8	23.4	30	SETK61	SETS61	CR5	HFC04008	CTI43TP15	1 TKY20F 2 HKY25R	4
3832AS22-C	•		1.5°	32	250	48	21.8	30.4	38	SETK61	SETS61	CR5		CTI43TP15	1 TKY20F 2 HKY25R 1 TKY20F	4
4640AT22-C * Select and use a shim as s	•		1.5°	40	300	60	26.2	38	46	SETK61 angle.	SETS61	CR5	HFC04008	CTI43TP15	@HKY25R	4

* Select and use a shim as shown below (sold separately), dependant on the lead angle.
* The screw-on type has no shim. The holder has an in-built lead angle. Please select a holder with the appropriate lead angle.
* The minimum cutting diameter indicates the prepared hole diameter, not the nominal thread diameter.

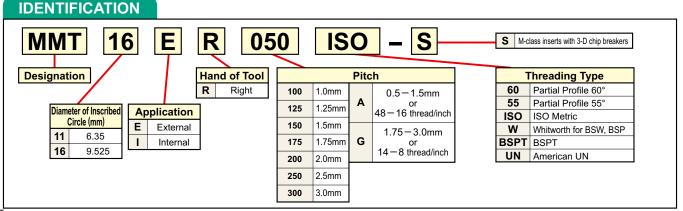

	SHIM			
Lead Angle (α°)	Order Number	Stock	Inclination Angle	Applicable
(α°)		R	(θ°)	Holder
−1.5°	CTI32TN15	•	-3°	
-0.5°	N05	•	-2°	
0.5°	P05	•	-1°	MMTIR
1.5°	P15	•	0°	0000
2.5°	P25	•	1°	
3.5°	P35		2°	
4 5°	P45	•	3°	

	Lead Angle (α°)	Order Number	Stock R	Inclination Angle (θ°)	Applicable Holder
ľ	−1.5°	CTI43TN15	•	-3°	
I	-0.5°	N05	•	-2°	
ľ	0.5°	P05	•	-1°	MMTIR
ľ	1.5°	P15		0°	0000
ľ	2.5°	P25		1°	୦୦ 22-C
ĺ	3.5°	P35		2°	
ĺ	4.5°	P45		3°	

Standard shim delivered with the holder.

IDENTIFICATION

RECOMMENDED CUTTING CONDITIONS


	Workpiece	Hardness	Grade	Cutting Speed (m/min)
Р	Mild Steel	≤180HB	VP10MF	150 (70-230)
		_ 10011B	VP15TF	100 (60-140)
	Carbon Steel / Alloy Steel	180-280HB	VP10MF	140 (80-200)
		100-20000	VP15TF	100 (60-140)
м		≤200HB	VP10MF	130 (80-180)
IVI	Stainless Steel		VP15TF	80 (40-120)
V	0.11	Tensile Strength	VP10MF	140 (80-200)
N	Cast Iron	≤350MPa	VP15TF	90 (60-120)

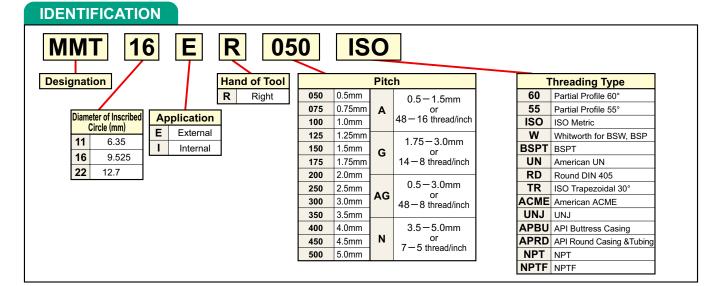
	Workpiece	Hardness	Grade	Cutting Speed (m/min)		
s	Heat-Resistant Alloy	-	VP10MF VP15TF	45 (15-70) 30 (20-40)		
	Titanium Alloy	_	VP10MF	60 (40-80)		
	,		VP15TF VP10MF	45(25-65) 50(30-70)		
Н	Heat-Treated Alloy	45-55HRC	VP15TF	40 (20-60)		

MMT STANDARD FOR M-CLASS INSERTS NEW WITH 3-D CHIP BREAKERS

EXTERNAL THREADING INSERTS

		Coated				Dimensio	ns (mm)	_	Total	
Type			Pit	ch					depth	
Ţ	Order Number	VP15TF			D1	S 1	Z 1	Z2	of cut	Geometry
			mm	thread/inch					(mm)	
	MMT16ERA60-S	0	0.5-1.5	48-16	9.525	3.44	0.8	0.9	-	Partial form 60°
60°	16ERG60-S	0	1.75-3.0	14-8	9.525	3.44	1.2	1.7	-	Z2
ofile										
Partial Profile 60°										
artia										
å										SI DI
	MMT16ERA55-S	0		48-16	9.525	3.44	0.8	0.9		Partial form
ŝ	16ERG55-S	0		48-16	9.525	3.44	1.2	1.7	_	55°
Partial Profile 55°	IBERG55-S	0		14-0	9.525	3.44	1.2	1.7	_	
rofil										
al P										
arti										
"										
	MMT16ER100ISO-S	•	1.0		9.525	3.44	0.7	0.7	0.61	Full form 60°
	16ER125ISO-S	•	1.25		9.525	3.44	0.8	0.9	0.77	$\overline{\langle \mathbf{Z}_2 \rangle}$
Metric	16ER150ISO-S	•	1.5		9.525	3.44	0.8	1.0	0.92	
Βe	16ER175ISO-S	•	1.75		9.525	3.44	0.9	1.2	1.07	
<u>s</u>	16ER200ISO-S	•	2.0		9.525	3.44	1.0	1.3	1.23	
	16ER250ISO-S	•	2.5		9.525	3.44	1.1	1.5	1.53	D 1
	16ER300ISO-S	•	3.0		9.525	3.44	1.2	1.6	1.84	<u>31 </u> /
	MMT16ER160UN-S	0		16	9.525	3.44	0.9	1.1	0.97	Full form 60°
z	16ER140UN-S	0		14	9.525	3.44	1.0	1.2	1.11	Z2
	16ER120UN-S	0		12	9.525	3.44	1.1	1.4	1.30	
erice										
American UN										
										S1 D1
$\left - \right $				10	0.505	2.44	0.0	1.0	0.00	
Whitworth for BSW, BSP	MMT16ER190W-S 16ER140W-S	0		19 14	9.525	3.44	0.8	1.0 1.2	0.86	Full form
ЗМ,	16ER140W-S	0		14	9.525 9.525	3.44 3.44	1.0 1.1	1.2	1.16 1.48	
Ba	IDERITOW-S	0		11	9.525	3.44	1.1	1.5	1.40	
th fc										
itwor										
Å										
$\left \right $	MMT16ER190BSPT-S	0		19	9.525	3.44	0.8	0.9	0.86	Full form 55°
	16ER140BSPT-S	0		14	9.525	3.44	1.0	1.2	1.16	∑2)
_	16ER110BSPT-S	0		11	9.525	3.44	1.1	1.5	1.48	
BSPT										
<u>۵</u>										
										S1 D1

INTERNAL THREADING INSERTS


							()			
		Coated	Pit	ch		Dimensio	ons (mm)		Total	
Type	Order Number	21	FIL FIL	GH	D1	S1	Z1	Z2	depth of cut	Geometry
		VP15TF	mm	thread/inch		31	21	22	(mm)	
	MMT11IRA60-S	0	0.5-1.5	48-16	6.35	3.04	0.8	0.9	_	Partial form
°	16IRA60-S	0	0.5-1.5	48-16	9.525	3.44	0.8	0.9	_	60°
e 6(16IRG60-S	0	1.75-3.0	14-8	9.525	3.44	1.2	1.7	_	
Partial Profile 60°			1.15 5.0	14 0	0.020	0.77	1.2	1.7		
al P										
arti										
"										S1
	MMT11IRA55-S	0		48-16	6.35	3.04	0.8	0.9	_	Partial form 55°
55°	16IRA55-S	0		48-16	9.525	3.44	0.8	0.9	_	$\overline{\langle \mathbf{Z}_2 \rangle}$
le 5	16IRG55-S	0		14-8	9.525	3.44	1.2	1.7	-	
Partial Profile										
ial F										
Part										
_										S 1
	MMT11IR100ISO-S	0	1.0		6.35	3.04	0.6	0.7	0.58	Full form
	11IR125ISO-S	0	1.25		6.35	3.04	0.8	0.9	0.72	
	11IR150ISO-S	0	1.5		6.35	3.04	0.8	1.0	0.87	60°
U	16IR100ISO-S	•	1.0		9.525	3.44	0.6	0.7	0.58	
SO Metric	16IR125ISO-S	•	1.25		9.525	3.44	0.8	0.9	0.72	
0	16IR150ISO-S	•	1.5		9.525	3.44	0.8	1.0	0.87	
S	16IR175ISO-S	•	1.75		9.525	3.44	0.9	1.2	1.01	
	16IR200ISO-S	•	2.0		9.525	3.44	1.0	1.3	1.15	
	16IR250ISO-S	•	2.5		9.525	3.44	1.1	1.5	1.44	
	16IR300ISO-S		3.0		9.525	3.44	1.1	1.5	1.73	
	MMT16IR160UN-S	0		16	9.525	3.44	0.9	1.1	0.92	Full form 60°
z	16IR140UN-S	0		14	9.525	3.44	0.9	1.2	1.05	
∩ u	16IR120UN-S	0		12	9.525	3.44	1.1	1.4	1.22	
American UN										
Ame										
										S1 D7
<u> </u>					0.505		0.0	4.0	0.00	
SР	MMT16IR190W-S	0		19	9.525	3.44	0.8	1.0	0.86	Full form 55°
for BSW, BSP	16IR140W-S	0		14	9.525	3.44	1.0	1.2	1.16	
r BS	16IR110W-S	0		11	9.525	3.44	1.1	1.5	1.48	Z1
wort										
Whitworth										
F_	MMT16IR190BSPT-S	0		19	9.525	3.44	0.8	0.9	0.86	Full form
1	16IR140BSPT-S	0		19	9.525	3.44	1.0	1.2	1.16	
1	16IR110BSPT-S	0		14	9.525	3.44	1.1	1.5	1.48	
BSPT					5.525	0.44	1.1	1.5	1.40	
BS										
1										
L								L		

MMT STANDARDS FOR G-CLASS GROUND INSERTS

EXTERNAL THREADING INSERTS

			1					_	_	_		
	<u>– 8</u>		Coa	ated	.M			Dimensio	ons (mm)		Total	
Type	rea	Order Number	MF	ц <mark>МЕ</mark>	Pi	tch	_		_	_	depth	Geometry
μ.	Thread Tolerance		VP10MF				D1	S 1	Z1	Z 2	of cut	coomically
	-				mm	thread/inch	0.505				(mm)	-
		MMT16ERA60	•	•	0.5-1.5		9.525	3.44	0.8	0.9	-	Partial form 60°
°		16ERG60	•	•	1.75-3.0		9.525	3.44	1.2	1.7	—	$\overline{(22)}$
le 6		16ERAG60	•		0.5-3.0		9.525	3.44	1.2	1.7	-	71
rofi	_	22ERN60	•		3.5-5.0	7-5	12.7	4.64	1.7	2.5	—	
ial F												
Partial Profile 60°												
1												
		MMT16ERA55	•	•		48-16	9.525	3.44	0.8	0.9	-	Partial form
5°		16ERG55	•	•		14-8	9.525	3.44	1.2	1.7	—	55°
Partial Profile 55°		16ERAG55	•			48-8	9.525	3.44	1.2	1.7	-	Z1
rofi	_	22ERN55	•			7-5	12.7	4.64	1.7	2.5	—	
al P												
arti												
1												
		MMT16ER050ISO	•		0.5		9.525	3.44	0.6	0.4	0.31	Full form
		16ER075ISO	•		0.75		9.525	3.44	0.6	0.6	0.46	
		16ER100ISO	•	•	1.0		9.525	3.44	0.7	0.7	0.61	
		16ER125ISO	•	•	1.25		9.525	3.44	0.8	0.9	0.77	
		16ER150ISO	•	•	1.5		9.525	3.44	0.8	1.0	0.92	
		16ER175ISO	•	•	1.75		9.525	3.44	0.9	1.2	1.07	
		16ER200ISO	•	•	2.0		9.525	3.44	1.0	1.3	1.23	
		16ER250ISO	•	•	2.5		9.525	3.44	1.1	1.5	1.53	60°
ĿĊ		16ER300ISO	•	•	3.0		9.525	3.44	1.2	1.6	1.84	71
Met	6g	22ER350ISO	•		3.5		12.7	4.64	1.6	2.3	2.15	
SO Metric	29	22ER400ISO	•		4.0		12.7	4.64	1.6	2.3	2.45	
<u> </u>		22ER450ISO	•		4.5		12.7	4.64	1.7	2.4	2.76	
		22ER500ISO	•		5.0		12.7	4.64	1.7	2.5	3.07	
1												

	Dimensions (mm) Total													
	<u>е ө</u>			ated	M			Dimensio	ons (mm)					
Type	Thread Tolerance	Order Number	VP10MF	VP15TF	Pit mm	ch thread/inch	D1	S1	Z1	Z2	depth of cut (mm)	Geometry		
		MMT11IRA60	•	•	0.5-1.5	48-16	6.35	3.04	0.8	0.9	_	Partial form		
		16IRA60	•	•	0.5-1.5	48-16	9.525	3.44	0.8	0.9	_	60°		
09		16IRG60	•	•	1.75-3.0	14-8	9.525	3.44	1.2	1.7	—			
ofile		16IRAG60	•		0.5-3.0	48-8	9.525	3.44	1.2	1.7	—			
- L	-	22IRN60	•		3.5 - 5.0	7-5	12.7	4.64	1.7	2.5	-			
Partial Profile 60°														
		MMT11IRA55	•	•		48-16	6.35	3.04	0.8	0.9	-	Partial form		
e_		16IRA55	•	•		48-16	9.525	3.44	0.8	0.9	-	55°		
e 55		16IRG55	•	•		14-8	9.525	3.44	1.2	1.7	-	Z2		
ofile		16IRAG55	•			48-8	9.525	3.44	1.2	1.7	-			
P	_	22IRN55	•			7-5	12.7	4.64	1.7	2.5	-			
Partial Profile 55°														
		MMT11IR050ISO	•		0.5		6.35	3.04	0.6	0.4	0.29	Full form		
		11IR075ISO	•		0.75		6.35	3.04	0.6	0.6	0.43			
		11IR100ISO	•	•	1.0		6.35	3.04	0.6	0.7	0.58			
		11IR125ISO	•	•	1.25		6.35	3.04	0.8	0.9	0.72			
		11IR150ISO	•	●	1.5		6.35	3.04	0.8	1.0	0.87			
		11IR175ISO	•		1.75		6.35	3.04	0.9	1.1	1.01			
		11IR200ISO	•		2.0		6.35	3.04	0.9	1.1	1.15			
		16IR050ISO	•		0.5		9.525	3.44	0.6	0.4	0.29	60°		
.e		16IR075ISO	•		0.75		9.525	3.44	0.6	0.6	0.43	z_1		
SO Metric	6H	16IR100ISO	•	•	1.0		9.525	3.44	0.6	0.7	0.58			
80		16IR125ISO	•	•	1.25		9.525	3.44	0.8	0.9	0.72			
<u>~</u>		16IR150ISO	•	•	1.5		9.525	3.44	0.8	1.0	0.87			
		16IR175ISO	•	•	1.75		9.525	3.44	0.9	1.2	1.01	S1 ~~/		
		16IR200ISO	•	•	2.0		9.525	3.44	1.0	1.3	1.15			
		16IR250ISO	•	•	2.5		9.525	3.44	1.1	1.5	1.44			
		16IR300ISO	•	•	3.0		9.525	3.44	1.1	1.5	1.73			
		22IR350ISO	•		3.5		12.7	4.64	1.6	2.3	2.02			
		22IR400ISO	•		4.0		12.7	4.64	1.6	2.3	2.31			
		22IR450ISO	•		4.5		12.7	4.64	1.6	2.4	2.60			
		22IR500ISO	•		5.0		12.7	4.64	1.6	2.3	2.89			

INTERNAL THREADING INSERTS

MMT STANDARDS FOR G-CLASS GROUND INSERTS

EXTERNAL THREADING INSERTS

				ated				Dimensio	ons (mm)		Tatal	
e	Thread Tolerance				Pi	tch		Dimensio			Total depth	
Type	Thre lera	Order Number	VP10MF	VP15TF			D1	S 1	Z1	Z 2	of cut	Geometry
	۲ <u>۲</u>		Ą	Ą	mm	thread/inch					(mm)	
		MMT16ER320UN	•			32	9.525	3.44	0.6	0.6	0.49	Full form
		16ER280UN	•			28	9.525	3.44	0.6	0.7	0.56	
		16ER240UN	•			24	9.525	3.44	0.7	0.8	0.65	
		16ER200UN	•			20	9.525	3.44	0.8	0.9	0.78	
		16ER180UN	•			18	9.525	3.44	0.8	1.0	0.87	
		16ER160UN	•	•		16	9.525	3.44	0.9	1.1	0.97	
		16ER140UN	•	•		14	9.525	3.44	1.0	1.2	1.11	
		16ER130UN	•			13	9.525	3.44	1.0	1.3	1.20	
		16ER120UN	•	•		12	9.525	3.44	1.1	1.4	1.30	c0°
_		16ER110UN	•			11	9.525	3.44	1.1	1.5	1.42	60°
۲ ۲		16ER100UN	•			10	9.525	3.44	1.1	1.5	1.56	Z1
icar	2A	16ER090UN	•			9	9.525	3.44	1.2	1.7	1.73	
American UN		16ER080UN	•			8	9.525	3.44	1.2	1.6	1.95	
Ā		22ER070UN	•			7	12.7	4.64	1.6	2.3	2.22	
		22ER060UN	•			6	12.7	4.64	1.6	2.3	2.60	
		22ER050UN	•			5	12.7	4.64	1.7	2.5	3.12	
1						Ŭ	,			2.0		
		MMT16ER280W	•			28	9.525	3.44	0.6	0.7	0.58	Full form
		16ER260W	•			26	9.525	3.44	0.7	0.8	0.63	
		16ER200W	•			20	9.525	3.44	0.8	0.9	0.81	
		16ER190W	•	•		19	9.525	3.44	0.8	1.0	0.86	
		16ER180W	•	-		18	9.525	3.44	0.8	1.0	0.90	
<u>م</u>		16ER160W	•			16	9.525	3.44	0.9	1.1	1.02	55%
Whitworth for BSW, BSP	A č	16ER140W	•	•		14	9.525	3.44	1.0	1.2	1.16	55°
SW	Class	16ER120W	•	•		12	9.525	3.44	1.1	1.4	1.36	71
ъВ	G	16ER110W		•		11	9.525	3.44	1.1	1.5	1.48	
th fc	Medium	16ER100W	•			10	9.525	3.44	1.1	1.5	1.63	
wor	led	16ER090W				9	9.525	3.44	1.2	1.7	1.81	
Vhit	2	16ER080W				8	9.525	3.44	1.2	1.5	2.03	
>		22ER070W	•			7	12.7	4.64	1.6	2.3	2.32	
		22ER060W				6	12.7	4.64	1.6	2.3	2.71	
		22ER050W	•			5	12.7	4.64	1.7	2.3	3.25	
		ZZENUJUW					12.1	4.04	1.1	2.4	0.20	
		MMT16ER280BSPT	•			28	9.525	3.44	0.6	0.6	0.58	Full form 55°
1	Ц	16ER190BSPT	•	•		19	9.525	3.44	0.8	0.9	0.86	Z2
	BS	16ER140BSPT	•	•		14	9.525	3.44	1.0	1.2	1.16	
BSPT	ard	16ER110BSPT	•	•		11	9.525	3.44	1.1	1.5	1.48	📙 ' 🎘
B,	Standard BSPT											
		MMT16ER100RD	•			10	9.525	3.44	1.1	1.2	1.27	Full form
05		16ER080RD	•			8	9.525	3.44	1.4	1.3	1.59	Z2
N4(16ER060RD	•			6	9.525	3.44	1.5	1.7	2.12	
Round DIN405	7h	22ER040RD	•			4	9.525	3.44	2.2	2.3	3.18	
												-S1 - D1 -

	Coated Dimensions (mm) Total													
	b g			-	N Du			Dimensio	ons (mm)					
Type	Thread Tolerance	Order Number	VP10MF	VP15TF	Pi	ch	.	•	-	7.	depth of cut	Geometry		
	년		P10	P15	mm	thread/inch	D1	S 1	Z1	Z 2	(mm)			
	-		-	>			6.25	2.04	0.6	0.6				
		MMT11IR320UN	•			32	6.35	3.04	0.6	0.6	0.46	Full form		
		11IR280UN	•			28	6.35	3.04	0.6	0.7	0.52			
		11IR240UN	•			24	6.35	3.04	0.7	0.8	0.61			
		11IR200UN	•			20	6.35	3.04	0.8	0.9	0.73			
		11IR180UN	•			18	6.35	3.04	0.8	1.0	0.81			
		11IR160UN	•			16	6.35	3.04	0.9	1.1	0.92			
		11IR140UN	•			14	6.35	3.04	0.9	1.1	1.05			
		16IR320UN	•			32	9.525	3.44	0.6	0.6	0.46			
		16IR280UN	•			28	9.525	3.44	0.6	0.7	0.52	60°		
z		16IR240UN	•			24	9.525	3.44	0.7	0.8	0.61			
an L		16IR200UN	•			20	9.525	3.44	0.8	0.9	0.73			
erice	2B	16IR180UN	•			18	9.525	3.44	0.8	1.0	0.81			
American UN		16IR160UN	٠	•		16	9.525	3.44	0.9	1.1	0.92			
		16IR140UN	•	•		14	9.525	3.44	0.9	1.2	1.05			
		16IR130UN	٠			13	9.525	3.44	1.0	1.3	1.13	-+ ** *		
		16IR120UN	•	•		12	9.525	3.44	1.1	1.4	1.22			
		16IR110UN	٠			11	9.525	3.44	1.1	1.5	1.33			
		16IR100UN	•			10	9.525	3.44	1.1	1.5	1.47			
		16IR090UN	٠			9	9.525	3.44	1.2	1.7	1.63			
		16IR080UN	•			8	9.525	3.44	1.1	1.5	1.83			
		22IR070UN	•			7	12.7	4.64	1.6	2.3	2.09			
		22IR060UN	•			6	12.7	4.64	1.6	2.3	2.44			
		22IR050UN	•			5	12.7	4.64	1.6	2.3	2.93			
		MMT11IR190W	•			19	6.35	3.04	0.8	1.0	0.86	Full form		
		11IR140W	•			14	6.35	3.04	0.9	1.1	1.16			
		16IR280W	•			28	9.525	3.44	0.6	0.7	0.58			
		16IR260W	•			26	9.525	3.44	0.7	0.8	0.63			
		16IR200W	•			20	9.525	3.44	0.8	0.9	0.81			
3SF	∢	16IR190W	•	•		19	9.525	3.44	0.8	1.0	0.86	55°		
Whitworth for BSW, BSP	SS	16IR180W	•			18	9.525	3.44	0.8	1.0	0.90			
BS	Medium Class	16IR160W	•			16	9.525	3.44	0.9	1.1	1.02			
n for	E	16IR140W	•	•		14	9.525	3.44	1.0	1.2	1.16			
ort	ediu	16IR120W	•			12	9.525	3.44	1.1	1.4	1.36			
hitw	ž	16IR110W	•	•		11	9.525	3.44	1.1	1.5	1.48			
≥		16IR100W	•			10	9.525	3.44	1.1	1.5	1.63			
		16IR090W	•			9	9.525	3.44	1.2	1.7	1.81			
		16IR080W	•			8	9.525	3.44	1.2	1.5	2.03			
		22IR070W	•			7	12.7	4.64	1.6	2.3	2.32			
		22IR060W	•			6	12.7	4.64	1.6	2.3	2.71			
		22IR050W	•			5	12.7	4.64	1.7	2.4	3.25			
	⊢ ⊢	MMT11IR190BSPT	•			19	6.35	3.04	0.8	0.9	0.86	Full form		
	SP	11IR140BSPT	•			14 19	6.35 9.525	3.04 3.44	0.9 0.8	1.0 0.9	1.16 0.86	Z2		
BSPT	ц Ч	16IR190BSPT 16IR140BSPT				19								
BS	dar					14	9.525 9.525	3.44 3.44	1.0 1.1	1.2 1.5	1.16 1.48			
	Standard BSPT	16IR110BSPT		•		11	9.020	3.44	1.1	1.5	1.40			
	Ś													
		MMT16IR100RD	•			10	9.525	3.44	1.1	1.2	1.27	5		
		16IR080RD	•			8	9.525	3.44	1.1	1.4	1.59	Full form		
140		16IR060RD	•			6	9.525	3.44	1.4	1.4	2.12	Z2		
DIV	7H	22IR040RD	•			4	12.7	4.64	2.2	2.3	3.18			
Round DIN405						-				2.0	0.10			
Rot														
	1			1	1		ı		1	r	I			

INTERNAL THREADING INSERTS

Cutting depth guide

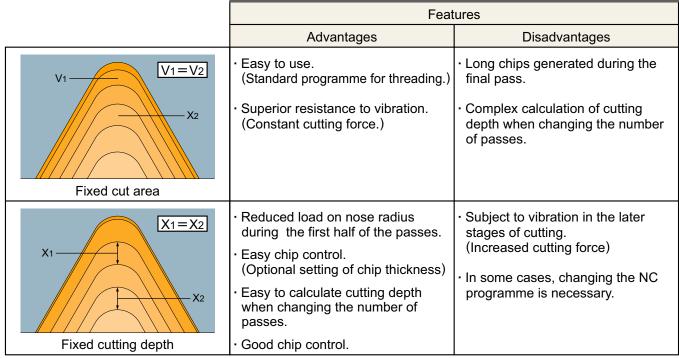
MMT STANDARDS FOR G-CLASS GROUND INSERTS

XTERNAL THREADING INSERTS

	Coated Dimensions (mm) Total												
0	Thread Tolerance			ated	Di-	tch		Dimensio	ons (mm)		Total		
Type	erar	Order Number	VP10MF		PI	lch	D1	S 1	Z1	Z 2	depth of cut	Geometry	
	10년 11		P1(mm	thread/inch		51	21	22	(mm)		
		MMT16ER150TR	-		1.5		9.525	3.44	1.0	1.1	0.90		
30°		16ER200TR	•		2.0		9.525	3.44	1.1	1.1	1.25	Semi-full form	
a										-		↓ 1 \/30°	
zoic	7e	16ER300TR			3.0		9.525	3.44	1.3	1.5	1.75		
ape	/e	22ER400TR	•		4.0		12.7	4.64	1.7	1.9	2.25		
ISO Trapezoidal 30°		22ER500TR	•		5.0		12.7	4.64	2.1	2.5	2.75		
ISC												D1	
		MMT16ER120ACME	•			12	9.525	3.44	1.1	1.2	1.19	Semi-full form	
ЛE		16ER100ACME	•			10	9.525	3.44	1.3	1.4	1.52		
American ACME		16ER080ACME	•			8	9.525	3.44	1.4	1.5	1.84	Z1	
an	3G	22ER060ACME	•			6	12.7	4.64	1.8	2.1	2.37		
eric		22ER050ACME	•			5	12.7	4.64	2.0	2.3	2.79		
Am												S1 D1	
		MMT16ER320UNJ	•			32	9.525	3.44	0.6	0.7	0.46	Full form	
		16ER280UNJ	•			28	9.525	3.44	0.7	0.7	0.52		
		16ER240UNJ	٠			24	9.525	3.44	0.7	0.8	0.61	60°	
		16ER200UNJ	٠			20	9.525	3.44	0.8	0.9	0.73		
7	2.4	16ER180UNJ	•			18	9.525	3.44	0.8	1.0	0.81		
ſŊŊ	3A	16ER160UNJ	•			16	9.525	3.44	0.9	1.1	0.92		
		16ER140UNJ	•			14	9.525	3.44	1.0	1.2	1.05		
		16ER120UNJ	•			12	9.525	3.44	1.1	1.3	1.22	S1 D1	
		16ER100UNJ	•			10	9.525	3.44	1.2	1.5	1.47		
		16ER080UNJ	•			8	9.525	3.44	1.2	1.6	1.83		
		MMT22ER050APBU	•			5	12.7	4.64	3.1	1.9	1.55	Full form -+	
API Buttress Casing	Standard API												
ing		MMT16ER100APRD	•			10	9.525	3.44	1.2	1.4	1.41	Full form 30°	
Tub	RD	16ER080APRD	•			8	9.525	3.44	1.3	1.5	1.81	73	
API Round Casing & Tubing	Standard API												
		MMT16ER270NPT	٠			27	9.525	3.44	0.7	0.8	0.66	Full form 60°	
	μ	16ER180NPT	•			18	9.525	3.44	0.8	1.0	1.01	Z2	
J RF	I NF	16ER140NPT	•			14	9.525	3.44	0.9	1.2	1.33		
American NPT	Standard NPT	16ER115NPT	•			11.5	9.525	3.44	1.1	1.5	1.64	📙 ' 🜦	
mer	and	16ER080NPT	•			8	9.525	3.44	1.3	1.8	2.42		
A	Sti											S1 D1	
		MMT16ER270NPTF	•			27	9.525	3.44	0.7	0.8	0.64	Full form 60°	
Ŀ		16ER180NPTF	٠			18	9.525	3.44	0.8	1.0	1.00	Z2 >	
American NPTF	2	16ER140NPTF	٠			14	9.525	3.44	0.9	1.2	1.35	Z1	
an	SS	16ER115NPTF	•			11.5	9.525	3.44	1.1	1.5	1.63		
eric	Class	16ER080NPTF	٠			8	9.525	3.44	1.3	1.8	2.38		
Am									-	-		- <u>S1</u>	

	INTERNAL THREADING INSERTS													
	_ ø		Coa	ated				Dimensio	ons (mm)		Total			
Type	Thread Tolerance		٨F		Pi	tch					depth			
Тy	Thr	Order Number	VP10MF			1	D1	S 1	Z 1	Z 2	of cut	Geometry		
	· P		₽		mm	thread/inch					(mm)			
		MMT16IR150TR	•		1.5		9.525	3.44	1.0	1.1	0.90	Semi-full form Z2		
ISO Trapezoidal 30°		16IR200TR	•		2.0		9.525	3.44	1.1	1.3	1.25	22		
dal		16IR300TR	•		3.0		9.525	3.44	1.3	1.5	1.75	30° V		
ioze	7H	22IR400TR	•		4.0		12.7	4.64	1.7	1.9	2.25			
ape		22IR500TR	•		5.0		12.7	4.64	2.1	2.5	2.75			
1 L		221NJUU I N	•		5.0		12.1	4.04	2.1	2.5	2.15			
ISC												<u>S1</u> 07 ~~		
							0.505	0.44	1.0	1.0	1.10			
		MMT16IR120ACME	•			12	9.525	3.44	1.2	1.3	1.19	Semi-full form Z2		
ME		16IR100ACME	•			10	9.525	3.44	1.2	1.3	1.52	29.		
American ACME		16IR080ACME	•			8	9.525	3.44	1.4	1.5	1.84			
can	3G	22IR060ACME	•			6	12.7	4.64	1.8	2.1	2.37			
eric		22IR050ACME	•			5	12.7	4.64	2.0	2.3	2.79			
Am														
			1	1 1		1	I 1		I	I	1			
ſŊŊ		When machini												
		And then mac	hine w	ith 60°	American I	JN. In this c	case, an t	full form	type inse	ert canno	ot be use	ed.		
						1								
		MMT22IR050APBU	•			5	12.7	4.64	2.8	1.9	1.55	Full form 13°-		
ing	_		•			5	12.1	7.07	2.0	1.5	1.00			
API Buttress Casing	Standard API													
ss (rd													
tre	Ida													
Bul	tan													
PI	Ś													
ing	(MMT16IR100APRD	•			20	9.525	3.44	1.2	1.4	1.41	Full form <u>30</u> °		
Tub	RD	16IR080APRD	•			8	9.525	3.44	1.3	1.5	1.81			
asing & Tubing	API RD											VZ2		
asing	d b													
0														
uno	anc													
API Round	Standar													
AF														
		MMT16IR270NPT	•			27	9.525	3.44	0.7	0.8	0.66	Full form 60°		
	Ы	16IR180NPT	•			18	9.525	3.44	0.8	1.0	1.01	Z2		
L R	Z	16IR140NPT	•			14	9.525	3.44	0.9	1.2	1.33			
can	ard	16IR115NPT	•			11.5	9.525	3.44	1.1	1.5	1.64			
American NPT	Standard NPT	16IR080NPT	•			8	9.525	3.44	1.3	1.8	2.42			
Am	Sta		⊢⊸				0.020	V 117				1 🛛 🗸 📈 🔹		
												S1		
						1.4	0.505	2 4 4	0.0	1.0	1.05			
		MMT16IR140NPTF	•			14	9.525	3.44	0.9	1.2	1.35	Full form 60°		
TF		16IR115NPTF	•			11.5	9.525	3.44	1.1	1.5	1.63			
L R	° 2	16IR080NPTF	•			8	9.525	3.44	1.3	1.8	2.38			
American NPTF	Class													
ieric	Ö													
Am														
												<u>S1</u> ~		
1			L									I		

INTERNAL THREADING INSERTS


Cutting depth guide

Recommended Cutting Methods and Conditions

Threading Methods

	Features							
	Advantages	Disadvantages						
Radial Infeed	 Easiest to use. (Standard programme for threading) Wide application. (Cutting conditions easy to change.) Uniform wear of the right and left sides of the cutting edge. 	 Difficult chip control. Subject to vibration in the later passes due to long cutting edge in contact with workpiece. Ineffective for large pitch threading. Heavy load on the nose radius. 						
Flank Infeed	 Relatively easy to use. (Semi-standard program for threading.) Reduced cutting force. Suitable for large pitch threads or materials that peel easily. Good chip discharge. 	 Large flank wear of the right side of a cutting edge. Relatively difficult to change cutting depth. (Re-programming necessary) 						
1°-5°+	 Preventing flank wear on the right side of the cutting edge. Reduced cutting force. Good for large pitch or materials that peel easily. Good chip discharge. 	 Complex machining programming. Difficult to change cutting depth. (NC programming necessary) 						
Modified Flank Infeed								
Incremental Infeed	 Uniform wear of the right and left sides of the cutting edge. Reduced cutting force. Good for large pitch or materials that peel easily. 	 Complex machining programming. Difficult to change cutting depth. (Re-programming necessary) Chips control is difficult. 						

Threading Depth

* It is recommended to set the depth of cut of the final pass to 0.05mm \sim 0.025mm.

Large cutting depths can cause vibration, leading to a poor surface finish.

Formulae

Formulae to calculate infeed for each pass in a reduced series.

$\triangle ap_n = \frac{ap}{\sqrt{n_{ap} - 1}} \times \sqrt{b}$	Example) External threading (ISO metric) Pitch : 1.0mm ap : 0.6mm nap : 5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1st pass $\triangle ap_1 = \frac{0.60}{\sqrt{5-1}} \times \sqrt{0.3} = 0.16 \rightarrow 0.16 (\triangle ap_1)$ 2nd pass $\triangle ap_2 = \frac{0.60}{\sqrt{5-1}} \times \sqrt{2-1} = 0.3 \rightarrow 0.14 (\triangle ap_2 - \triangle ap_1)$ 3rd pass $\triangle ap_3 = \frac{0.60}{\sqrt{5-1}} \times \sqrt{3-1} = 0.42 \rightarrow 0.12 (\triangle ap_3 - \triangle ap_2)$ 4th pass $\triangle ap_4 = \frac{0.60}{\sqrt{5-1}} \times \sqrt{4-1} = 0.52 \rightarrow 0.1 (\triangle ap_4 - \triangle ap_3)$ 5th pass $\triangle ap_5 = \frac{0.60}{\sqrt{5-1}} \times \sqrt{5-1} = 0.6 \rightarrow 0.08 (\triangle ap_5 - \triangle ap_4)$

NC Programme for Modified Flank Infeed

Example:- M12×1.0 5 passes modified 1°-3°

External Threading	Internal Treading
G00 Z = 5.0	G00 Z = 5.0
X = 14.0	X = 10.0
G92 U-4.34 Z-13.0 F1.0	G92 U4.34 Z-13.0 F1.0
G00 W - 0.07	G00 W-0.07
G92 U-4.64 Z-13.0 F1.0	G92 U4.64 Z-13.0 F1.0
G00 W - 0.06	G00 W-0.05
G92 U-4.88 Z-13.0 F1.0	G92 U4.84 Z-13.0 F1.0
G00 W - 0.05	G00 W-0.04
G92 U-5.08 Z-13.0 F1.0	G92 U5.02 Z-13.0 F1.0
G00 W - 0.03	G00 W-0.03
G92 U-5.20 Z-13.0 F1.0	G92 U5.14 Z-13.0 F1.0
G00	G00

Recommended Cutting Methods and Conditions

Selecting Cutting Conditions

		Priority											
		Tool life	Cutting force	Surface finish	Precision of thread	Chips discharge	Efficiency (Reduced passes)						
Threading	Radial	0		0	0		0						
methods	Flank	$(\triangle$: Modified)	0	$(\triangle$: Modified)		0							
Cutting depth	Fixed cutting depth					0							
	Fixed cut area	0	0	0	0		0						

* Tool life and surface finish accuracy can be increased by changing the threading method from flank infeed to modified flank infeed.

* Chip control can be improved by increasing the cutting depth in the later half of passes.

Cutting depth and the number of passes

Selection of the appropriate cutting depth and the right number of passes is vital for threading.

- For most threading, use a "threading cycle program," which has originally been installed on machines, and specify "total cutting depth" and "cutting depth in the first or final pass."
- Cutting depth and the number of passes are easy to change for the radial infeed method, thus making it easy to determine the appropriate cutting conditions.

Advice on improved threading

Increasing tool life

- To prevent damage to the nose radius -*Recommended method - Modified flank infeed.*
- To have uniform flank wear on both sides of a cutting edge -Recommended method - Radial infeed
- To prevent crater wear -Recommended method - Flank infeed

Preventing chip problems

- · Change to flank or modified infeed.
- During radial infeed cutting, use an inverted holder and change the coolant supply to a downward direction.
- When using the radial infeed method, set the minimum cutting depth at around 0.2mm to make the chips thicker.
- Tangled chips during internal threading can damage the insert. In these cases, pause slightly away from the start point and clear the chips with coolant before every pass.
- · Change to M-class inserts with a 3-D chip breaker.

Feature and benefits of Mitsubishi products

• Insert grades, specially produced for threading tools, ensure highly efficient cutting by enabling high-speed machining and a reduced number of passes.

To achieve highly efficient machining

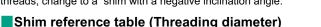
- Increase cutting speed. (Dependant on the maximum revolution and rigidity of the machine.)
- · Reduce the number of passes. (Reduce by 30-40%.)
- A reduced number of passes can improve chip discharge because of the thicker chips generated.

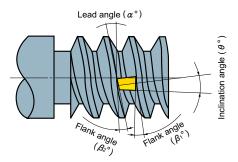
Preventing vibration

- · Change to flank or modified infeed.
- When using radial infeed, reduce cutting depth in the later half of passes and lower the cutting speed.

Increased surface finish accuracy

- A final wiping pass should be performed at the same depth of cut as the last regular pass.
- When using the flank infeed method, change to radial infeed only during the final pass.

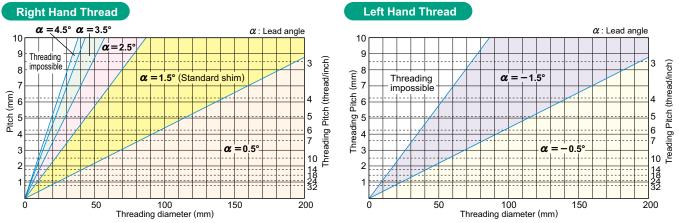

MITSUBISHI


Selecting a Shim for the MMT Series

Flank angle and lead angle

Lead angle (α) depends on a combination of thread diameter and pitch.

Select a shim so that the lead angle of the thread can coincide with the flank angles of the thread and insert (β_1 , β_2). No need to change a shim for general threading with an MMT holder. When threading with a small diameter or large pitch, change the shim depending on the lead angle, referring to the table and graph below. When threading left hand threads, change to a shim with a negative inclination angle.



Lead Angle			Right Hand	Thread (mm)			L	eft Hand Thread (mr.	n)
Pitch (mm)	Threading impossible	4.5°	3.5°	2.5°	1.5°	0.5°	Threading impossible	—1.5°	-0.5°
0.5	$\leq \phi 1.9$	¢1.9− ¢2.2	φ2.2 — φ2.8	\$\phi_2.8 - \$\phi_4.3\$	\$\phi_4.3 - \$\phi_11.4\$	$\geq \phi 11.4$	$\leq \phi 4.3$	\$\phi_4.3 - \$\phi_11.4\$	≥¢11.4
0.75	$\leq \phi 2.9$	φ2.9 - φ3.2	φ3.2 – φ4.3	φ4.3 — φ6.5	φ6.5 - φ17.1	$\geq \phi 17.1$	$\leq \phi 6.5$	φ6.5-φ17.1	$\geq \phi 17.1$
1	$\leq \phi 3.8$	$\phi 3.8 - \phi 4.3$	$\phi 4.3 - \phi 5.7$	φ5.7 — φ8.7	φ8.7 - φ22.8	$\geq \phi$ 22.8	$\leq \phi 8.7$	$\phi 8.7 - \phi 22.8$	$\geq \phi$ 22.8
1.25	$\leq \phi 4.8$	φ4.8 - φ5.4	φ5.4 — φ7.1	φ7.1 — φ10.9	\$\$\phi_10.9 - \$	$\geq \phi 28.5$	$\leq \phi 10.9$	φ10.9 - φ28.5	$\geq \phi 28.5$
1.5	$\leq \phi 5.7$	$\phi 5.7 - \phi 6.5$	φ6.5 — φ8.5	φ8.5 — φ13.0	\$\$\phi_13.0 - \$	$\geq \phi 34.2$	$\leq \phi 13.0$	φ13.0 - φ34.2	$\geq \phi$ 34.2
1.75	$\leq \phi 6.7$	φ6.7 — φ7.6	φ7.6 — φ9.9	φ9.9 — φ15.2	\$\$\phi_15.2 - \$\$\phi_39.9\$\$	$\geq \phi$ 39.9	$\leq \phi 15.2$	φ15.2 - φ39.9	$\geq \phi$ 39.9
2	$\leq \phi$ 7.6	$\phi 7.6 - \phi 8.6$	¢8.6 − ¢11.4	φ11.4 — φ17.4	φ17.4 - φ45.6	$\geq \phi 45.6$	$\leq \phi 17.4$	φ17.4 - φ45.6	$\geq \phi 45.6$
2.5	$\leq \phi 9.5$	φ9.5 — φ10.8	φ10.8 — φ14.2	φ14.2 — φ21.7	\$\phi_21.7 - \$\phi_57.0	$\geq \phi 57.0$	$\leq \phi 21.7$	φ21.7 - φ57.0	$\geq \phi 57.0$
3	$\leq \phi 11.4$	φ11.4 — φ13.0	φ13.0 — φ17.0	φ17.0 — φ26.0	$\phi 26.0 - \phi 68.4$	$\geq \phi 68.4$	$\leq \phi$ 26.0	$\phi 26.0 - \phi 68.4$	$\geq \phi 68.4$
3.5	$\leq \phi 13.3$	φ13.3 — φ15.1	φ15.1 — φ19.9	φ19.9 — φ30.4	$\phi 30.4 - \phi 79.8$	$\geq \phi$ 79.8	$\leq \phi 30.4$	φ30.4 - φ79.8	$\geq \phi$ 79.8
4	$\leq \phi 15.2$	φ15.2 — φ17.3	φ17.3 — φ22.7	φ22.7 — φ34.7	¢34.7− ¢91.2	$\geq \phi 91.2$	$\leq \phi$ 34.7	φ34.7 - φ91.2	$\geq \phi 91.2$
4.5	$\leq \phi 17.1$	φ17.1 — φ19.4	φ19.4 — φ25.6	φ 25.6 — φ 39.1	<i>ϕ</i> 39.1 − <i>ϕ</i> 102.6	≥ ¢ 102.6	$\leq \phi$ 39.1	φ39.1 −φ102.6	≥ <i>ϕ</i> 102.6
5	$\leq \phi$ 19.0	φ19.0 — φ21.6	φ21.6 – φ28.4	ϕ 28.4 - ϕ 43.4	φ43.4 −φ114.0	≥ ¢ 114.0	$\leq \phi 43.4$	φ43.4 -φ114.0	≥¢114.0

Shim reference graph

(Note) Back turning in the case of left hand threads.

Note) When a thread lead angle ≤ the tool flank angle, change the shim to prevent side interference with the insert. (Refer to the table below for the calculation of thread lead angle and tool flank angle.)

When replacing a shim, check if the difference between the thread lead angle and shim inclination angle is within: $2.5^{\circ} - 0.5^{\circ}$ where thread helix angle is $60^{\circ} (55^{\circ})$ $2^{\circ} - 1^{\circ}$ where thread helix angle is $30^{\circ} (29^{\circ})$ * Inclination angle of a standard shim is 0° .

* The holder has a 1.5 ° lead angle.

Example of selecting a shim

· When the thread lead angle is 2.2°

①In the case when the thread helix angle is 60°

 $(2.2^{\circ} \text{ lead angle}) - (2.5^{\circ} - 0.5^{\circ}) = -0.3^{\circ} - 1.7^{\circ}$ shim inclination angle is appropriate. Threading with a standard shim (0° inclination angle) is possible. But, replacing with a shim with a 1° inclination angle is recommended, refer to Standard Shim List on pages 9 and 10.

2 In the case when the thread helix angle is 30°

 $(2.2^{\circ} \text{ lead angle}) - (2^{\circ} - 1^{\circ}) = 0.2^{\circ} - 1.2^{\circ}$ shim inclination angle is appropriate. Replacing with a shim with a 1° inclination angle is recommended, referring to Standard Shim List on pages 9 and 10.

Calculation of thread lead angle

$$\tan \alpha = \frac{I}{\pi d} = \frac{nP}{\pi d}$$

$$\alpha : \text{Lead angle}$$

$$I : \text{Lead}$$

$$n : \text{Number of threads}$$

$$P : \text{Pitch}$$

$$d : \text{Effective diameter}$$
of thread

Relief angle of an insert set on a holder

Thread helix angle	Internal relief angle	External relief angle
60°	8.5°	6°
55°	7°	7°
30°	4°	2.5°
29°	4°	2.5°

• Relief angles (β_2 , β_1) of an insert become small when the thread helix angle of a trapezoidal, round, or other thread is small. Take care when selecting a shim.

Standard of Depth of Cut (External Threading)

EXTERNAL (RADIAL INFEED)

ISO Metric

Pitch	Total Number of Passes Insert Type										Туре						
(mm)	Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grinding inserts	M-class inserts with 3-D chip breakers
0.5	0.31	0.10	0.08	0.07	0.06											MMT16ER050ISO	-
0.75	0.46	0.16	0.14	0.10	0.06											16ER075ISO	-
1.0	0.61	0.18	0.15	0.12	0.10	0.06										16ER100ISO	MMT16ER100ISO-S
1.25	0.77	0.19	0.17	0.14	0.11	0.10	0.06									16ER125ISO	16ER125ISO-S
1.5	0.92	0.22	0.21	0.17	0.14	0.12	0.06									16ER150ISO	16ER150ISO-S
1.75	1.07	0.22	0.21	0.16	0.13	0.11	0.09	0.09	0.06							16ER175ISO	16ER175ISO-S
2.0	1.23	0.24	0.23	0.17	0.16	0.14	0.12	0.11	0.06							16ER200ISO	16ER200ISO-S
2.5	1.53	0.26	0.23	0.19	0.17	0.15	0.13	0.12	0.11	0.11	0.06					16ER250ISO	16ER250ISO-S
3.0	1.84	0.27	0.25	0.20	0.18	0.16	0.14	0.13	0.12	0.12	0.11	0.10	0.06			16ER300ISO	16ER300ISO-S
3.5	2.15	0.33	0.30	0.24	0.21	0.18	0.17	0.15	0.14	0.14	0.12	0.11	0.06			22ER350ISO	-
4.0	2.45	0.34	0.31	0.24	0.22	0.19	0.17	0.16	0.14	0.14	0.13	0.12	0.12	0.11	0.06	22ER400ISO	_
4.5	2.76	0.38	0.34	0.28	0.24	0.22	0.20	0.18	0.16	0.16	0.15	0.14	0.13	0.12	0.06	22ER450ISO	-
5.0	3.07	0.42	0.38	0.32	0.27	0.24	0.22	0.20	0.18	0.18	0.17	0.16	0.15	0.12	0.06	22ER500ISO	_

American UN

Pitch	Total						N	umber o	of Pass	es						Inser	Туре
inch)	Cutting Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grinding inserts	M-class inserts with 3-D chip breakers
32	0.49	0.17	0.15	0.11	0.06											MMT16ER320UN	-
28	0.56	0.17	0.14	0.10	0.09	0.06										16ER280UN	-
24	0.65	0.18	0.16	0.14	0.11	0.06										16ER240UN	-
20	0.78	0.20	0.18	0.13	0.11	0.10	0.06									16ER200UN	-
18	0.87	0.22	0.20	0.15	0.13	0.11	0.06									16ER180UN	-
16	0.97	0.22	0.20	0.15	0.12	0.11	0.11	0.06								16ER160UN	MMT16ER160UN-S
14	1.11	0.23	0.21	0.16	0.13	0.11	0.11	0.10	0.06							16ER140UN	16ER140UN-S
13	1.20	0.25	0.22	0.17	0.14	0.13	0.12	0.11	0.06							16ER130UN	-
12	1.30	0.28	0.23	0.18	0.16	0.14	0.13	0.12	0.06							16ER120UN	MMT16ER120UN-S
11	1.42	0.28	0.23	0.19	0.16	0.14	0.13	0.12	0.11	0.06						16ER110UN	-
10	1.56	0.28	0.24	0.19	0.16	0.14	0.13	0.13	0.12	0.11	0.06					16ER100UN	-
9	1.73	0.34	0.29	0.22	0.17	0.15	0.14	0.13	0.12	0.11	0.06					16ER090UN	-
8	1.95	0.35	0.30	0.24	0.19	0.16	0.15	0.14	0.13	0.12	0.11	0.06				16ER080UN	-
7	2.22	0.37	0.33	0.28	0.24	0.20	0.17	0.16	0.15	0.14	0.12	0.06				22ER070UN	-
6	2.60	0.42	0.35	0.29	0.25	0.21	0.18	0.17	0.16	0.15	0.13	0.12	0.11	0.06		22ER060UN	-
5	3.12	0.43	0.39	0.31	0.27	0.24	0.22	0.20	0.19	0.19	0.18	0.17	0.15	0.12	0.06	22ER050UN	_

Whitworth for BSW, BSP

	1																
Pitch	Total						Nu	umber o	of Pass	es						Insert	Туре
(inread/ inch)	Cutting Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grinding inserts	M-class inserts with 3-D chip breakers
28	0.58	0.17	0.14	0.11	0.10	0.06										MMT16ER280W	-
26	0.63	0.18	0.15	0.13	0.11	0.06										16ER260W	-
20	0.81	0.20	0.18	0.14	0.12	0.11	0.06									16ER200W	-
19	0.86	0.21	0.19	0.15	0.13	0.12	0.06									16ER190W	MMT16ER190W-S
18	0.90	0.25	0.19	0.15	0.13	0.12	0.06									16ER180W	-
16	1.02	0.21	0.18	0.15	0.13	0.11	0.09	0.09	0.06							16ER160W	-
14	1.16	0.23	0.21	0.17	0.14	0.12	0.12	0.11	0.06							16ER140W	MMT16ER140W-S
12	1.36	0.27	0.25	0.20	0.16	0.15	0.14	0.13	0.06							16ER120W	-
11	1.48	0.27	0.24	0.20	0.17	0.15	0.14	0.13	0.12	0.06						16ER110W	MMT16ER110W-S
10	1.63	0.27	0.25	0.20	0.17	0.15	0.15	0.13	0.13	0.12	0.06					16ER100W	-
9	1.81	0.28	0.26	0.21	0.18	0.16	0.15	0.14	0.13	0.12	0.12	0.06				16ER090W	-
8	2.03	0.30	0.27	0.22	0.19	0.17	0.16	0.15	0.14	0.13	0.12	0.12	0.06			16ER080W	-
7	2.32	0.34	0.32	0.26	0.22	0.20	0.18	0.17	0.16	0.15	0.14	0.12	0.06			22ER070W	_
6	2.71	0.35	0.33	0.27	0.23	0.21	0.20	0.19	0.17	0.16	0.15	0.14	0.13	0.12	0.06	22ER060W	-
5	3.25	0.42	0.40	0.35	0.29	0.26	0.24	0.22	0.20	0.19	0.18	0.17	0.15	0.12	0.06	22ER050W	_

(Note) · Set the finishing allowance on a diameter at approx. 0.1mm when using an insert with a wiper. · Please note the cutting depth and the number of passes when a nose radius of an insert without a wiper or of an internal threading insert is small to prevent damage to the insert nose. Please set the cutting depth sufficiently deep enough on materials such as hardened steel or austenitic stainless steel to help prevent premature

wear and chipping caused by the outer layer of the material.

mitsubishi

BSPT

Pitch	Total					Numb	er of Pa	asses				Insert	Туре
(thread/ inch)	Cutting Depth		2	3	4	5	6	7	8	9		G-class grinding inserts	M-class inserts with 3-D chip breakers
28	0.58	0.17	0.14	0.11	0.10	0.06						MMT16ER280BSPT	_
19	0.86	0.22	0.19	0.15	0.12	0.12	0.06					16ER190BSPT	MMT16ER190BSPT-S
14	1.16	0.24	0.20	0.17	0.14	0.12	0.12	0.11	0.06			16ER140BSPT	16ER140BSPT-S
11	1.48	0.25	0.23	0.21	0.18	0.16	0.14	0.13	0.12	0.06		16ER110BSPT	16ER110BSPT-S

Round DIN 405

Pitch	Total Cutting						Ni	umber o	of Pass	es						 Insert Type
	Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grinding inserts
10	1.27	0.23	0.21	0.20	0.19	0.16	0.12	0.10	0.06							MMT16ER100RD
8	1.59	0.23	0.21	0.20	0.19	0.18	0.16	0.14	0.12	0.10	0.06					16ER080RD
6	2.12	0.26	0.25	0.24	0.22	0.21	0.19	0.17	0.16	0.14	0.12	0.10	0.06			16ER060RD
4	3.18	0.34	0.33	0.32	0.30	0.28	0.26	0.24	0.22	0.20	0.19	0.17	0.15	0.12	0.06	22ER040RD

SO Trapezoidal 30°

Pitch							Nu	umber o	of Passe	es						Insert Type
(mm)	Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grinding inserts
1.5	0.90	0.23	0.21	0.16	0.13	0.11	0.06									MMT16ER150TR
2.0	1.25	0.29	0.26	0.21	0.17	0.14	0.12	0.06								16ER200TR
3.0	1.75	0.32	0.31	0.24	0.19	0.18	0.17	0.15	0.13	0.06						16ER300TR
	2.25											0.12	0.16			22ER400TR
	2.75														0.06	22ER500TR

American ACME

Pitch	Total Cutting						Nu	umber o	of Pass	es						Insert Type
inch)	Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grinding inserts
12	1.19	0.27	0.23	0.20	0.17	0.14	0.12	0.06								MMT16ER120ACME
10	1.52	0.29	0.25	0.21	0.18	0.16	0.14	0.12	0.11	0.06						16ER100ACME
8	1.84	0.30	0.26	0.22	0.19	0.16	0.15	0.14	0.13	0.12	0.11	0.06				16ER080ACME
6	2.37	0.34	0.30	0.27	0.24	0.21	0.19	0.16	0.14	0.12	0.12	0.11	0.11	0.06		22ER060ACME
5	2.79	0.36	0.33	0.30	0.26	0.23	0.20	0.18	0.17	0.16	0.15	0.14	0.13	0.12	0.06	22ER050ACME

UNJ

Pitch	Total Cutting						Nu	umber o	of Pass	es			 		Insert Type
inch)	Depth	1	2	3	4	5	6	7	8	9	10	11			G-class grinding inserts
32	0.46	0.16	0.14	0.10	0.06										MMT16ER320UNJ
28	0.52	0.16	0.12	0.09	0.09	0.06									16ER280UNJ
24	0.61	0.17	0.14	0.14	0.10	0.06									16ER240UNJ
20	0.73	0.19	0.16	0.13	0.10	0.09	0.06								16ER200UNJ
18	0.81	0.23	0.18	0.14	0.10	0.10	0.06								16ER180UNJ
16	0.92	0.26	0.21	0.14	0.12	0.10	0.09								16ER160UNJ
14	1.05	0.26	0.23	0.17	0.12	0.11	0.10	0.06							16ER140UNJ
12	1.22	0.28	0.27	0.20	0.17	0.13	0.11	0.06							16ER120UNJ
10	1.47	0.30	0.29	0.21	0.15	0.13	0.12	0.11	0.10	0.06					16ER100UNJ
8	1.83	0.31	0.30	0.23	0.18	0.15	0.14	0.13	0.12	0.11	0.10	0.06			16ER080UNJ

API Buttress Casing

Pitch	Total Cutting						Nu	imber c	of Pass	es					Insert Type
inch)	Depth	1	2	3	4	5	6	7	8	9	10	11			G-class grinding inserts
5	1.55	0.25	0.23	0.17	0.15	0.13	0.12	0.12	0.11	0.11	0.10	0.06			MMT22ER050APBU

(Note) $\,\cdot\,$ Set the finishing allowance on a diameter at approx. 0.1mm when using an insert with a wiper.

Please note the cutting depth and the number of passes when a nose radius of an insert without a wiper or of an internal threading insert is small to prevent damage to the insert nose.
Please set the cutting depth sufficiently deep enough on materials such as hardened steel or austenitic stainless steel to help prevent premature wear and chipping caused by the outer layer of the material.

Standard of Depth of Cut (External Threading)

EXTERNAL (RADIAL INFEED)

API Round Casing & Tubing

Pitch	Total Cutting						Nu	umber o	of Pass	es				 	Insert Type
	Depth		2	3	4	5	6	7	8	9	10	11	12		G-class grinding inserts
10	1.41	0.25	0.23	0.16	0.14	0.12	0.12	0.12	0.11	0.10	0.06				MMT16ER100APRD
8	1.81	0.25	0.24	0.19	0.16	0.14	0.14	0.13	0.13	0.13	0.13	0.11	0.06		16ER080APRD

American NPT

Pitch	Total Cutting						Nu	umber o	of Pass	es							Insert Type
inch)	Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	G-class grinding inserts
27	0.66	0.15	0.13	0.12	0.11	0.09	0.06										MMT16ER270NPT
18	1.01	0.20	0.16	0.14	0.13	0.12	0.11	0.09	0.06								16ER180NPT
14	1.33	0.23	0.19	0.16	0.14	0.13	0.12	0.11	0.10	0.09	0.06						16ER140NPT
11.5	1.64	0.24	0.19	0.17	0.15	0.15	0.13	0.13	0.12	0.11	0.10	0.09	0.06				16ER115NPT
8	2.42	0.33	0.28	0.23	0.20	0.18	0.16	0.15	0.14	0.13	0.12	0.12	0.11	0.11	0.10	0.06	16ER080NPT

American NPTF

Pitch	Total Cutting						Nu	umber o	of Pass	es							Insert Type
inch)	Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	G-class grinding inserts
27	0.64	0.16	0.14	0.11	0.09	0.08	0.06										MMT16ER270NPTF
18	1.00	0.19	0.16	0.14	0.13	0.12	0.11	0.09	0.06								16ER180NPTF
14	1.35	0.23	0.21	0.16	0.14	0.13	0.12	0.11	0.10	0.09	0.06						16ER140NPTF
11.5	1.63	0.24	0.23	0.19	0.15	0.13	0.11	0.11	0.11	0.10	0.10	0.10	0.06				16ER115NPTF
8	2.38	0.32	0.27	0.23	0.19	0.17	0.16	0.15	0.14	0.13	0.12	0.12	0.11	0.11	0.10	0.06	16ER080NPTF

(Note) · Set the finishing allowance on a diameter at approx. 0.1mm when using an insert with a wiper.

Please note the cutting depth and the number of passes when a nose radius of an insert without a wiper or of an internal threading insert is small to prevent damage to the insert nose.

• Please set the cutting depth sufficiently deep enough on materials such as hardened steel or austenitic stainless steel to help prevent premature wear and chipping caused by the outer layer of the material.

Standard of Depth of Cut (Internal Threading)

INTERNAL (RADIAL INFEED)

SO Metric

Pitch	Total						Nu	mber o	of Pass	ses							Inser	t Type	
(mm)	Cutting Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grir	iding inserts		nserts with breakers
0.5	0.29	0.09	0.07	0.07	0.06											MMT11IR050ISO	MMT16IR050ISO	-	-
0.75	0.43	0.15	0.13	0.09	0.06											11IR075ISO	16IR075ISO	-	-
1.0	0.58	0.17	0.15	0.11	0.09	0.06										11IR100ISO	16IR100ISO	MMT11IR100ISO-S	MMT16IR100ISO-S
1.25	0.72	0.18	0.16	0.12	0.11	0.09	0.06									11IR125ISO	16IR125ISO	11IR125ISO-S	16IR125ISO-S
1.5	0.87	0.21	0.20	0.16	0.13	0.11	0.06									11IR150ISO	16IR150ISO	11IR150ISO-S	16IR150ISO-S
1.75	1.01	0.21	0.20	0.15	0.12	0.10	0.09	0.08	0.06							11IR175ISO	16IR175ISO	-	16IR175ISO-S
2.0	1.15	0.24	0.22	0.18	0.14	0.12	0.10	0.09	0.06							11IR200ISO	16IR200ISO	-	16IR200ISO-S
2.5	1.44	0.25	0.24	0.21	0.15	0.13	0.12	0.10	0.09	0.09	0.06					-	16IR250ISO	-	16IR250ISO-S
3.0	1.73	0.26	0.25	0.22	0.17	0.14	0.13	0.12	0.11	0.10	0.09	0.08	0.06			-	16IR300ISO	-	16IR300ISO-S
3.5	2.02	0.32	0.30	0.23	0.19	0.17	0.15	0.14	0.13	0.12	0.11	0.10	0.06			-	22IR350ISO	-	_
4.0	2.31	0.33	0.31	0.24	0.22	0.18	0.15	0.14	0.13	0.12	0.12	0.11	0.10	0.10	0.06	-	22IR400ISO	_	_
4.5	2.60	0.36	0.33	0.28	0.24	0.21	0.19	0.16	0.15	0.14	0.13	0.12	0.12	0.11	0.06	-	22IR450ISO	-	—
5.0	2.89	0.41	0.38	0.32	0.27	0.24	0.21	0.18	0.16	0.15	0.14	0.13	0.12	0.12	0.06	_	22IR500ISO	-	-

American UN

Pitch	Total						Nu	mber o	of Pass	ses							Insert Type	
(thread/ inch)	Cutting Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grin	ding inserts	M-class inserts with 3-D chip breakers
32	0.46	0.16	0.14	0.10	0.06											MMT11IR320UN	MMT16IR320UN	-
28	0.52	0.16	0.13	0.09	0.08	0.06										11IR280UN	16IR280UN	-
24	0.61	0.17	0.15	0.13	0.10	0.06										11IR240UN	16IR240UN	-
20	0.73	0.18	0.15	0.13	0.11	0.10	0.06									11IR200UN	16IR200UN	-
18	0.81	0.20	0.18	0.14	0.12	0.11	0.06									11IR180UN	16IR180UN	-
16	0.92	0.20	0.18	0.15	0.12	0.11	0.10	0.06								11IR160UN	16IR160UN	MMT16IR160UN-S
14	1.05	0.21	0.18	0.15	0.13	0.11	0.11	0.10	0.06							11IR140UN	16IR140UN	16IR140UN-S
13	1.13	0.22	0.19	0.16	0.14	0.13	0.12	0.11	0.06							-	16IR130UN	-
12	1.22	0.24	0.22	0.18	0.16	0.13	0.12	0.11	0.06							-	16IR120UN	MMT16IR120UN-S
11	1.33	0.24	0.22	0.20	0.15	0.12	0.12	0.11	0.11	0.06						-	16IR110UN	-
10	1.47	0.25	0.22	0.21	0.14	0.13	0.12	0.12	0.11	0.11	0.06					-	16IR100UN	-
9	1.63	0.31	0.23	0.21	0.17	0.15	0.14	0.13	0.12	0.11	0.06					-	16IR090UN	-
8	1.83	0.31	0.26	0.21	0.18	0.16	0.15	0.14	0.13	0.12	0.11	0.06				-	16IR080UN	-
7	2.09	0.36	0.30	0.24	0.21	0.18	0.17	0.16	0.15	0.14	0.12	0.06				-	22IR070UN	-
6	2.44	0.40	0.33	0.25	0.23	0.19	0.17	0.16	0.15	0.14	0.13	0.12	0.11	0.06		-	22IR060UN	-
5	2.93	0.41	0.35	0.31	0.26	0.23	0.21	0.20	0.19	0.17	0.15	0.14	0.13	0.12	0.06	_	22IR050UN	-

Whitworth for BSW, BSP

Pitch	Total						Nu	mber o	of Pass	ses							Insert Type	
(thread/ inch)	Cutting Depth		2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grin	ding inserts	M-class inserts with 3-D chip breakers
28	0.58	0.17	0.14	0.11	0.10	0.06										—	MMT16IR280W	-
26	0.63	0.18	0.15	0.13	0.11	0.06										-	16IR260W	-
20	0.81	0.20	0.18	0.14	0.12	0.11	0.06									—	16IR200W	—
19	0.86	0.21	0.19	0.15	0.13	0.12	0.06									MMT11IR190W	16IR190W	MMT16IR190W-S
18	0.90	0.25	0.19	0.15	0.13	0.12	0.06									—	16IR180W	—
16	1.02	0.21	0.18	0.15	0.13	0.11	0.09	0.09	0.06							-	16IR160W	-
14	1.16	0.23	0.21	0.17	0.14	0.12	0.12	0.11	0.06							MMT11IR140W	16IR140W	MMT16IR140W-S
12	1.36	0.27	0.25	0.20	0.16	0.15	0.14	0.13	0.06							-	16IR120W	16IR120W-S
11	1.48	0.27	0.24	0.20	0.17	0.15	0.14	0.13	0.12	0.06						-	16IR110W	-
10	1.63	0.27	0.25	0.20	0.17	0.15	0.15	0.13	0.13	0.12	0.06					-	16IR100W	-
9	1.81	0.28	0.26	0.21	0.18	0.16	0.15	0.14	0.13	0.12	0.12	0.06				-	16IR090W	-
8	2.03	0.30	0.27	0.22	0.19	0.17	0.16	0.15	0.14	0.13	0.12	0.12	0.06			-	16IR080W	-
7	2.32	0.34	0.32	0.26	0.22	0.20	0.18	0.17	0.16	0.15	0.14	0.12	0.06			-	22IR070W	-
6	2.71	0.35	0.33	0.27	0.23	0.21	0.20	0.19	0.17	0.16	0.15	0.14	0.13	0.12	0.06	-	22IR060W	-
5	3.25	0.42	0.40	0.35	0.29	0.26	0.24	0.22	0.20	0.19	0.18	0.17	0.15	0.12	0.06	_	22IR050W	_

(Note) · Set the finishing allowance on a diameter at approx. 0.1mm when using an insert with a wiper.
· Please note the cutting depth and the number of passes when a nose radius of an insert without a wiper or of an internal threading insert is small to prevent damage to the insert nose.
· Please set the cutting depth sufficiently deep enough on materials such as hardened steel or austenitic stainless steel to help prevent premature wear and chipping caused by the outer layer of the material.

Standard of Depth of Cut (Internal Threading)

INTERNAL (RADIAL INFEED)

BSPT

Pitch	Total						Nu	mber o	of Pase	ses					Insert Type	
	Cutting Depth		2	3	4	5	6	7	8	9				G-class grin	iding inserts	M-class inserts with 3-D chip breakers
19	0.86	0.22	0.19	0.15	0.12	0.12	0.06							MMT11IR190BSPT	MMT16IR190BSPT	MMT16IR190BSPT-S
14	1.16	0.24	0.20	0.17	0.14	0.12	0.12	0.11	0.06					11IR140BSPT	16IR140BSPT	16IR140BSPT-S
11	1.48	0.25	0.23	0.21	0.18	0.16	0.14	0.13	0.12	0.06				_	16IR110BSPT	16IR110BSPT-S

Round DIN 405

Pitch (thread/	Total						Nu	mber o	of Pass	ses						Insert Type
inch)	Depth		2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grinding inserts
10	1.27	0.23	0.21	0.20	0.19	0.16	0.12	0.10	0.06							MMT16IR100RD
8	1.59	0.23	0.21	0.20	0.19	0.18	0.16	0.14	0.12	0.10	0.06					16IR080RD
6	2.12	0.26	0.25	0.24	0.22	0.21	0.19	0.17	0.16	0.14	0.12	0.10	0.06			16IR060RD
4	3.18	0.34	0.33	0.32	0.30	0.28	0.26	0.24	0.22	0.20	0.19	0.17	0.15	0.12	0.06	22IR040RD

ISO Trapezoidal 30°

Pitch	Total Cutting						Nu	mber o	of Pass	ses						 Insert Type
(mm)	Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grinding inserts
1.5	0.90	0.23	0.21	0.16	0.13	0.11	0.06									MMT16IR150TR
2	1.25	0.29	0.26	0.21	0.17	0.14	0.12	0.06								16IR200TR
3	1.75	0.32	0.31	0.24	0.19	0.18	0.17	0.15	0.13	0.06						16IR300TR
4	2.25	0.33	0.32	0.24	0.22	0.21	0.17	0.16	0.15	0.14	0.13	0.12	0.06			22IR400TR
5	2.75	0.35	0.32	0.26	0.24	0.22	0.21	0.19	0.19	0.17	0.15	0.14	0.13	0.12	0.06	22IR500TR

American ACME

Pitch (thread/	Total Cutting						Nu	mber o	of Pass	ses						Insert Type
	Depth		2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grinding inserts
12	1.19	0.27	0.23	0.20	0.17	0.14	0.12	0.06								MMT16IR120ACME
10	1.52	0.29	0.25	0.21	0.18	0.16	0.14	0.12	0.11	0.06						16IR100ACME
8	1.84	0.30	0.26	0.22	0.19	0.16	0.15	0.14	0.13	0.12	0.11	0.06				16IR080ACME
6	2.37	0.34	0.30	0.27	0.24	0.21	0.19	0.16	0.14	0.12	0.12	0.11	0.11	0.06		22IR060ACME
5	2.79	0.36	0.33	0.30	0.26	0.23	0.20	0.18	0.17	0.16	0.15	0.14	0.13	0.12	0.06	22IR050ACME

API Buttress Casing

Pitch (thread/	Total Cutting						Nu	mber	of Pas	ses					Insert Type
inch)	Depth	1	2	3	4	5	6	7	8	9	10	11			G-class grinding inserts
5	1.55	0.25	0.23	0.17	0.15	0.13	0.12	0.12	0.11	0.11	0.10	0.06			MMT22IR050APBU

API Round Casing & Tubing

Pitch (thread/	Total						Nu	mber o	of Pase	ses					Insert Type
inch)	Depth		2	3	4	5	6	7	8	9	10	11	12		G-class grinding inserts
10	1.41	0.25	0.23	0.16	0.14	0.12	0.12	0.12	0.11	0.10	0.06				MMT16IR100APRD
8	1.81	0.25	0.24	0.19	0.16	0.14	0.14	0.13	0.13	0.13	0.13	0.11	0.06		16IR080APRD

(Note) · Set the finishing allowance on a diameter at approx. 0.1mm when using an insert with a wiper.

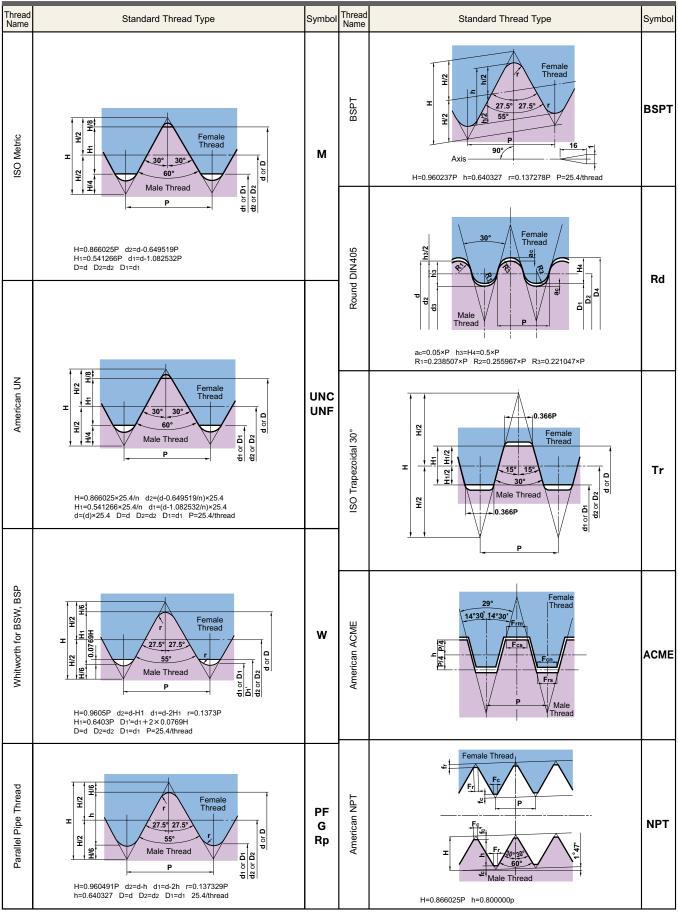
• Please note the cutting depth and the number of passes when a nose radius of an insert without a wiper or of an internal threading insert is small to prevent damage to the insert nose.

· Please set the cutting depth sufficiently deep enough on materials such as hardened steel or austenitic stainless steel to help prevent premature wear and chipping caused by the outer layer of the material.

American NPT

Pitch	Total Cutting							Numb	er of P	asses							Insert Type
inch)	Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	G-class grinding inserts
27	0.66	0.15	0.13	0.12	0.11	0.09	0.06										MMT16IR270NPT
18	1.01	0.20	0.16	0.14	0.13	0.12	0.11	0.09	0.06								16IR180NPT
14	1.33	0.23	0.19	0.16	0.14	0.13	0.12	0.11	0.10	0.09	0.06						16IR140NPT
11.5	1.64	0.24	0.19	0.17	0.15	0.15	0.13	0.13	0.12	0.11	0.10	0.09	0.06				16IR115NPT
8	2.42	0.33	0.28	0.23	0.20	0.18	0.16	0.15	0.14	0.13	0.12	0.12	0.11	0.11	0.10	0.06	16IR080NPT

American NPTF


Pitch	Total Cutting							Numb	er of P	asses							Insert Type
inch)	Depth		2	3	4	5	6	7	8	9	10	11	12	13	14	15	G-class grinding inserts
14	1.35	0.23	0.21	0.16	0.14	0.13	0.12	0.11	0.10	0.09	0.06						MMT16IR140NPTF
11.5	1.63	0.24	0.23	0.19	0.15	0.13	0.11	0.11	0.11	0.10	0.10	0.10	0.06				16IR115NPTF
8	2.38	0.32	0.27	0.23	0.19	0.17	0.16	0.15	0.14	0.13	0.12	0.12	0.11	0.11	0.10	0.06	16IR080NPTF

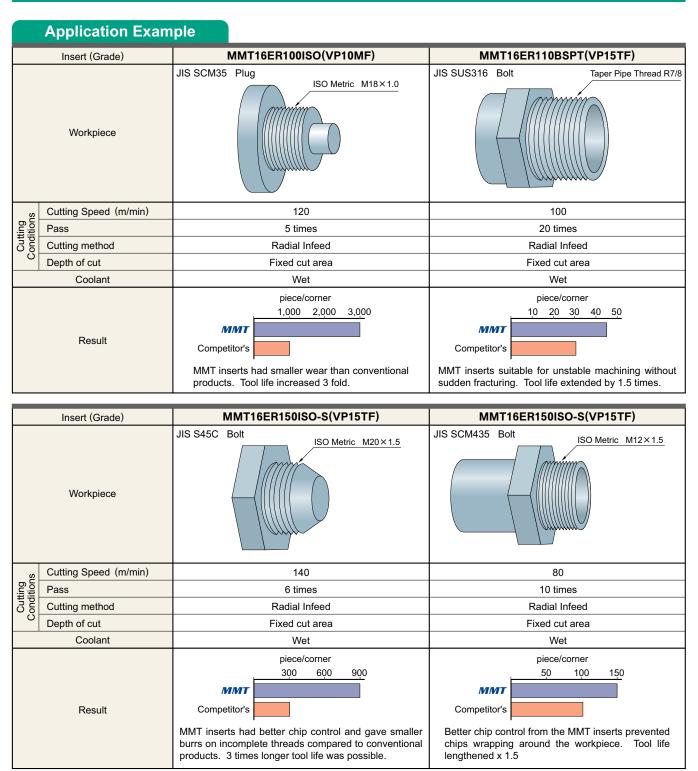
(Note) · Set the finishing allowance on a diameter at approx. 0.1mm when using an insert with a wiper.

· Please note the cutting depth and the number of passes when a nose radius of an insert without a wiper or of an internal threading insert is small to

Please set the cutting depth sufficiently deep enough on materials such as hardened steel or austenitic stainless steel to help prevent premature wear and chipping caused by the outer layer of the material.

Standard Thread and Corresponding Insert

Wiper : Insert order number is determined by selected pitch. General: An insert is applicable to several pitch types.


MITSUBISHI

Troubleshooting

Problems	Observation	Causes	Solutions
Low thread precision.	Threads do not mesh	Incorrect tool installation.	Set the insert centre height at 0mm.
	with each other.		Check holder inclination (Lateral).
	Shallow thread.	Incorrect depth of cut.	Modify the depth of cut.
		Lack of insert wear or plastic deformation resistance.	Refer to "Quickly generated flank wear." and "Large plastic deformation." below.
Poor surface finish.	Surface damage.	Chips wrap around or clog the work pieces.	Change to flank infeed and control the chip discharge direction.
			Change to an M-class insert with a 3-D chip breaker.
		The side of the insert cutting edge interferes with the workpiece.	Check the lead angle and select an appropriate shim.
	Surface tears.	Built-up edge (Welding).	Increase cutting speed.
			Increase coolant pressure and volume.
		Cutting resistance too high.	Decrease depth of cut per pass.
	Surface vibrations.	Cutting speed too high.	Decrease the cutting speed.
		Insufficient work piece or tool clamping.	Re-check work piece and tool clamping. (Chuck pressure, clamping allowance)
		Incorrect tool installation.	Set the insert centre height at 0mm.
Short tool life.	Flank wear quickly	Cutting speed too high.	Decrease the cutting speed.
	generated.	Too many passes causes abrasive wear.	Reduce the number of passes.
		Small depth of cut for the finishing pass.	Do not re-cut at 0mm depth of cut, larger than 0.05mm depth of cut is recommended.
	Non-uniform wear of the right and left sides of the cutting edge.	The work piece lead angle and the tool lead angle do not match.	Check the work piece lead angle and select an appropriate shim.
	Chipping and fracture.	Cutting speed too low.	Increase cutting speed.
		Cutting resistance too high.	Increase the number of passes and decrease the cutting resistance per pass.
		Unstable clamping.	Check work piece deflection.
			Shorten tool overhang.
			Recheck work piece and tool clamping. (Chuck pressure, clamping allowance)
		Chip packing.	Increase coolant pressure to blow away chips.
			Change the tool pass to control chips. (Lengthen each pass to allow the coolant to clear the chips.
			Change from standard internal cutting to back turning to prevent chip jamming.
		Non-chamfered work pieces causes high resistance at the start of each pass.	Chamfer the workpiece entry and exit faces .
	Large plastic	High cutting speed and large heat generation.	Decrease the cutting speed.
	deformation.	Lack of coolant supply.	Check coolant is supply is sufficient.
			Increase coolant pressure and volume.
		Cutting resistance too high.	Increase the number of passes and decrease the cutting resistance per pass.

New Threading Tools

MITSUBISHI

For Your Safety
• Do not touch cutting edges and chips without gloves. • Machine within the recommended conditions, and replace worn tools with new ones before breakage. • Use protectors such as safety covers and protective glasses. High-temperature chips can scatter and long chips can be discharged. Always take precautions against fire when using water-insoluble coolant. Clamp the inserts and parts firmly with the wrench or spanner provided.

*****MITSUBISHI MATERIALS CORPORATION

MITSUBISHI MATERIALS CORPORATION

Marketing Dept

KFC bldg., 7F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015, Japan TEL +81-3-5819-8771 FAX +81-3-5819-8774

MMC HARTMETALL GmbH

Comeniusstr.2, 40670, Meerbusch GERMANY TEL +49-2159-9189-0 FAX +49-2159-918966

MITSUBISHI MATERIALS U.S.A. CORPORATION Headquarters

17401, Eastman Street, Irvine, California, 92614, USA TEL +1-949-862-5100 FAX +1-949-862-5180

MMC METAL SINGAPORE PTE LTD.

10, Arumugam Road, #04-00 Lion Industrial Bldg.,409957, SINGAPORE TEL +65-6743-9370 FAX +65-6749-1469

JSA

Mitsubishi Carbide Home page : http://www.mitsubishicarbide.com

(Tools specifications subject to change without notice.)

G