

DISTRIBUTED BY: TEMTON CO.,LTD.

Production

Development

Sunfab's product quality is world famous.

Our Pumps and Motors undergo stringent testing in our own lab and test rigs during production to ensure unsurpassed reliability in the field. Our state of the art production facility employs only the most experienced NC operators and Service Technicians.

Cutting edge technology, together with high quality sensors and control components, produce the requisite conditions for structured and accurate measurement results.

Proven production ensures quality

We are convinced our manufacturing expertise and know-how are key ingredients in our continuing success.

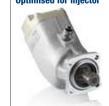
That's why we manufacture all core components inhouse, ensuring that our products live up to their well known quality and high performance.

Product overview

Single flow pumps

range of hydraulic pumps. The pumps are optimised for all kinds of applications. We offer 12 different sizes in the range of 12-130 cm³

SCP 012-108 DIN



SAP 084, 108 DIN

SAPT 090, 130 DIN

SLPD 20/20-64/32 DIN

SAP 084, 108 DIN

Dual flow pumps

The range of fixed displacement dual flow pumps SCPD and SLPD comprises 10 different sizes from 20/20 cm3 up to 76/76 cm3. The SCPD dual flow pumps are of bent-axis design, the SLPD pumps are of inline design with swash plate.

SLPD 40/20-64/32 SAF

SCPD 56/26 DIN

SLPD 20/20-64/32 DIN

We offer variable pumps with a displacement of 62, 92, 112 and 130 cm3. An operating pressure of up to 450 bar, different kinds of regulators and tandem pump assembly enable you to use this kind of pump in almost all applications where you need a variable oil flow.

Variable flow pumps

SCM 012-130 DIN

SCM 010-130 SAE

SCM 010-034 SAE B2

SCM 010-130 IS0

SCM 025-108 M2

Accessories

of up to 285 kW.

Fixed motors

Sunfab offers hydraulic motors according to SAE, ISO and DIN standard as well as cartridge motors. The displacement is 10-130 cm³ with a choice of shafts, seals and connection ports. High revolution speeds and a operating pressure up to 400 bar allows a power output

Sunfab's accessories are a unique range of components designed to meet a bodybuilder's need of basic hydraulic installations.

Adapters & Flanges

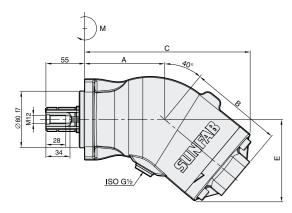
Sunfab is your supplier of a wide

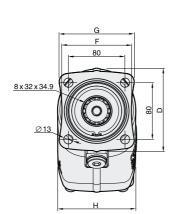
with pressure up to 400 bar.

SAP 012-108 DIN

SAP 012-108 DIN is a series of light weight casing piston pumps with a fixed displacement for demanding mobile hydraulics.

SAP 012-108 DIN covers the displacement range 012-108 cm³/rev. at a maximum pressure of 400 bar. It is a modern, compact pump which meets the market's high demands on flow performance, pressure, efficiency and small installation dimensions. The pump is either mounted directly on the power take-off or on a frame bracket via an intermediate shaft.


Other advantages:


- · Light weight metal casing design
- Smooth operation over the entire speed range
- Long life due to high demands on material selection, such as bearings, seals, etc
- · Corrosion free lightweight-housing
- Less heat generation due to better ability to dissipate heat through housing

For more information, technical data and drawings visit: www.sunfab.com

SAP 012-108 DI	N		012	017	025	034	040	047	056	064	084	108
Theoretical oil flow I / m	nin				I/min							
at pump speed	rpm	500	6.3	8.5	12.7	17.1	20.6	23.5	28.0	31.8	41.5	54.0
		1000	12.6	17.0	25.4	34.2	41.2	47.1	56.0	63.6	83.6	108.0
		1500	18.9	25.5	38.1	51.3	61.8	70.6	84.0	95.4	125.4	162.0
Displacement	cm³/rev		12.6	17.0	25.4	34.2	41.2	47.1	56.0	63.6	83.6	108.0
Max pump speed												
continuous	rpm		2300	2300	2300	2300	1900	1900	1900	1900	1500	1500
limited			3000	3000	3000	3000	2500	2500	2500	2500	2000	2000
Max working pressure	bar		400	400	400	400	400	400	400	400	400	400
Weight	kg		6.9	6.9	7.1	7.1	9.8	9.8	9.8	9.8	13.9	13.9
Dimensions	mm	Α	97	97	97	97	113	113	113	113	122	122
		В	116	116	116	116	131	131	131	131	147	147
		С	206	206	206	206	235	235	235	235	264	264
		D	115	115	115	115	118	118	118	118	127	127
		Ε	102	102	102	102	115	115	115	115	133	133
		F	98	98	98	98	98	98	98	98	98	98
		G	106	106	106	106	106	106	106	106	106	106
		Н	97	97	97	97	111	111	111	111	118	118
	ISO G	Р	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	1	1
Tare-weight torque (M)	Nm		6.0	6.0	6.5	6.5	11.5	11.5	11.5	11.5	18.0	18.0
Direction of rotation	Left (L) or Right (R)											

Spline Shaft:

DIN 5462 / ISO14

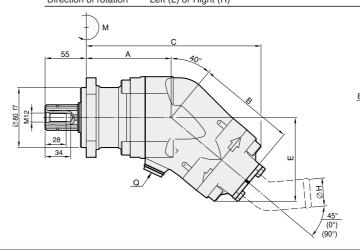
Pumps fixed single flow

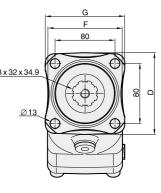
SCP 012-108 DIN

For more information, technical and drawings visit: www.sunfab.com

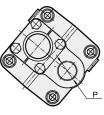
SCP 012-108 DIN is a series of piston pumps with a fixed displacement for demanding mobile hydraulics.

SCP 012-108 DIN covers the entire displacement range 12-108 cm³/rev. at a maximum operating pressure of 400 bar. It is a modern, compact pump which meets the market's high demands on flow performance, pressure, efficiency and small installation dimensions.


It is either mounted directly on the power take-off, or on a frame bracket via an intermediate shaft.


Other advantages:

- High maximum speed while maintaining low noise levels
- Smooth operation over the entire speed range
- Long life due to high demands on material selection, such as bearings, seals, etc.
- O-rings on all contact surfaces as well as double shaft seals eliminate oil leakage from the pump and power take-off
- The stop shoulder on the angular housing allows the pump's direction of rotation to be changed without the risk of altering the gear meshing



SCP 012-108 DIN			012	017	025	034	040	047	056	064	084	108
Theoretical oil flow I/mi at pump speed	n rpm	500 1000	6.3 12.6	8.5 17.0	12.7 25.4	17.1 34.2	I/min 20.6 41.2	23.5 47.1	28.0 56.0	31.8 63.6	41.5 83.6	54.0 108.0
		1500	18.9	25.5	38.1	51.3	61.8	70.6	84.0	95.4	125.4	162.0
Displacement	cm³/rev		12.6	17.0	25.4	34.2	41.2	47.1	56.0	63.6	83.6	108.0
Max pump speed continuous limited	rpm		2300 3000	2300 3000	2300 3000	2300 3000	1900 2500	1900 2500	1900 2500	1900 2500	1500 2000	1500 2000
Max working pressure	bar		400	400	400	400	400	400	400	400	400	400
Weight	kg		8.3	8.3	8.5	8.5	11.7	11.7	11.7	11.7	17.0	17.0
Dimensions	mm	A B C	97 112 202	97 112 202	97 112 202	97 112 202	113 130 228	113 130 228	113 130 228	113 130 228	123 147 259	123 147 259
		D E	99 97	99 97	99 97	99 97	109 109	109 109	109 109	109 109	126 126	126 126
		F G	89 97	89 97	89 97	89 97	99 106	99 106	99 106	99 106	115 123	115 123
		Н	38 50	38 50	38 50	38 50	38 50	38 50	38 50	38 50	50 64	50 64
	ISO G ISO G	P Q	3/4 1/2	3/4 1/2	3/4 1/2	3/4 1/2	3/4 1/2	3/4 1/2	3/4 1/2	3/4 1/2	1 1/2	1 1/2
Tare-weight torque (M)	Nm		6.9	6.9	7.4	7.4	13	13	13	13	21	21
Direction of rotation	Left (L) or Right (R)											

Spline Shaft: DIN 5462 / ISO14 Mounting flange: ISO 7653-D

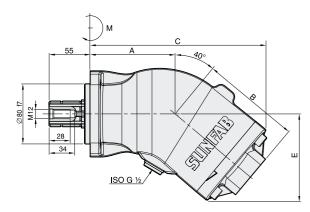
SAP 084, 108 DIN Optimised

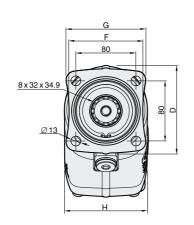
SAP DIN Optimised is a series of piston pumps with a fixed displacement for demanding mobile hydraulics.

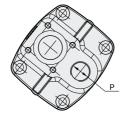
SAP 084, 108 DIN Optimised covers the displacement range 84 and 108 cm³/rev. at a maximum pressure

SAP 084, 108 DIN Optimised covers the displacement range 84 and 108 cm³/rev. at a maximum pressure of 400 bar. It is a modern, compact pump which meets the market's high demands on flow performance, pressure, efficiency and small installation dimensions. It is either mounted directly on the power take-off or on a frame bracket via an intermediate shaft.

It is a speed-optimised pump and are therefore supplied for either left (L) or right (R) rotation direction. The pump's front shaft seals are manufactured from HNBR to withstand the higher temperatures involved with engine mounting.


Other advantages:


- Light weight metal casing design
- Smooth operation over the entire speed range
- Long life due to high demands on material selection, such as bearings, seals, etc
- Corrosion free lightweight-housing
- Less heat generation due to better ability to dissipate heat through housing



For more information, technical data and drawings visit: www.sunfab.cor

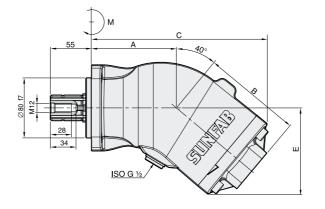
SAP 084, 108 DIN Optimised			084	108
Theoretical oil flow l/min			l/min	
at pump speed	rpm	500	41.8	54
		1000	83.6	108
		1500	125.4	106
Displacement	cm³/rev		83.6	108.0
Max pump speed				
continuous	rpm		1700	1800
limited			2200	2300
Max working pressure	bar		400	400
Weight	kg		13.9	13.9
Dimensions	mm	Α	122	122
		В	147	147
		С	264	264
		D	127	127
		E	133	133
		F	98	98
		G	106	106
		Н	118	118
	ISO G	Р	1	1
Tare-weight torque (M)	Nm		18.0	18.0
Direction of rotation	Left (L) or Right (R)	·	·	

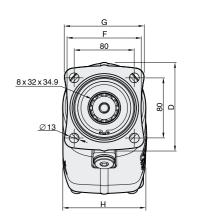
Pumps fixed single flow

SAPT 090, 130 DIN

SAPT 090, 130 DIN is an addition to the SAP series that supports larger flows and pressure up to 300 bar.

SAPT 090, 130 DIN are ideal for applications that require both a high flow and a high operating pressure in combination with demands on small installation measurements. The pumps are either mounted directly on the power take-off or on a frame bracket via an intermediate shaft.


Other advantages:


- · Light weight metal casing design
- Smooth operation over the entire speed range
- Long life due to high demands on material selection, such as bearings, seals, etc
- Corrosion free lightweight-housing
- Less heat generation due to better ability to dissipate heat through housing

For more information, technical data and drawings visit: www.sunfab.com

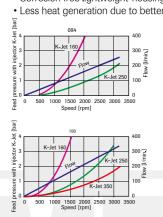
SAPT 090, 130 DIN			090	130
Nominal oil flow			I/min	
at pump speed	rpm	500	45.0	65.0
		1000	90.0	130.0
		1500	135.0	195.0
Displacement	cm³/rev		90.0	130.0
Max pump speed				
continuous	rpm		1500	1500
limited			2000	2000
Max working pressure	bar		300	300
Weight	kg		9.8	13.9
Dimensions	mm	Α	113	122
		В	131	147
		С	235	264
		D	118	127
		E	115	133
		F	98	98
		G	106	106
		Н	111	118
	ISO G	Р	3/4	1
Tare-weight torque (M)	Nm	М	11.5	18.0
Direction of rotation Left (L) or Right (R)			

Spline Shaft:

SAP 084, 108 DIN Optimised for Injector

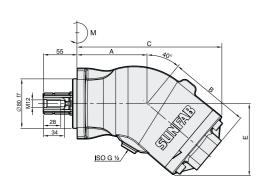
For more information, technical data and drawings visit: **www.sunfab.com**

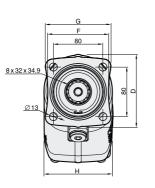
SAP DIN Optimised for Injector is an externally drained variant of the SAP series, which offers a very high oil flow in combination with the Sunfab injector K-Jet 2.

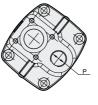

SAP 084, 108 DIN Optimised for Injector is suitable for hydraulic motor operations in closed hydraulic systems with injector K-Jet 2 for pressurisation of the suction side. This gives excellent speed characteristics and high flows.

The pump's front shaft seals are manufactured from HNBR to withstand the higher temperatures involved with engine mounting.

It is a speed-optimised pump and therefore supplied for either left (L) or right (R) rotation direction.


Other advantages:


- · Light weight metal casing design
- Smooth operation over the entire speed range
- Long life due to high demands on material selection, such as bearings, seals, etc
- Corrosion free lightweight-housing
- Less heat generation due to better ability to dissipate heat through housing



Threaded suct	tion connection with feed pressur	e above 4 bai		STEEL-	319	$\overline{}$		1	
SAP 084, 108 DIN Optimised for injector			084				108		
K-Jet 2		without		160	250	without	160	250	350
Oil flow at 97% vol. efficiency	rpm			l/min			I/min		
and 20 MPa	500	41.0		-	-	52.0	52.0	-	-
	100	81.0		81.0	-	105.0	105.0	105.0	-
	1500	122.0		122.0	122.0	157.0	157.0		157.0
	2000			162.0	162.0				210.0
	2500 3000				203.0 243.0			262.0	262.0 314.0
Disalessment			00.0		243.0		100.0	_	314.0
Displacement	cm³/rev	77 \	83.6				108.0		
Max pump speed		000		750	4000	000		1000	4000
min continuous	rpm	300		750	1200	300 1800	550 1500	1000 2500	1200 3000
max continuous max limited		1700 2200		2000	3000	2300	1500	2500	3000
	bar	2200	400			2300	400		
Max working pressure									
Weight	kg		13.9				13.9		
Dimensions	mm								
	A		122				122		
	В		147				147		
	C		264 127				264 127		
	D E		133				133		
	F		98				98		
	Ġ		106				106		
	H		118				118		
	ISO G P		1				1		
Tare-weight torque (M)	Nm		18				18		
Direction of rotation	Left (L) or Right (R)								

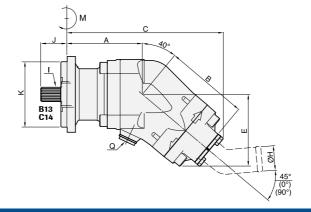
Pumps fixed single flow

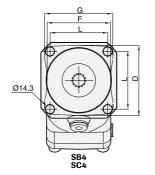
SCP 012-108 SAE

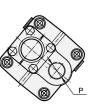
For more information, technical data and drawings visit: **www.sunfab.com**

SCP 012-108 SAE is a series of piston pumps with a fixed displacement for demanding mobile hydraulics.

Sunfab's SCP 012-108 SAE pumps are equipped with shafts and flanges according to the SAE-B and SAE-C standard. They are available in the range from 12-108 cm³. It is a modern, compact pump which meets the market's high demands on flow performance, pressure, efficiency and small installation dimensions.


The pump is either mounted directly on the power take-off or on a frame bracket via an intermediate shaft. The stop shoulder on the angular housing allows the pump's direction of rotation to be changed without the risk of altering the gear meshing.


Other advantages:


- High maximum speed while maintaining low noise levels
- Smooth operation over the entire speed range
- · Long life due to high demands on material selection, such as bearings, seals, etc
- O-rings on all contact surfaces as well as double shaft seals eliminate oil leakage from the pump and power take-off

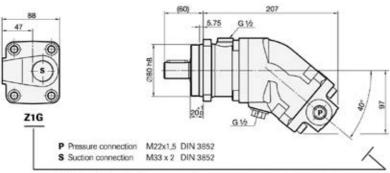
SCD 012 100 SAE			040	047	005	004	0.40	0.47	050	004	0.40	0.47	050	004	004	400
SCP 012-108 SAE		_	012	017	025	034	040	047	056	064	040	047	056	. 064	084	108
Theoretical oil flow						<i>l</i> ∕min								min		
at pump speed	rpm	500	6.3	8.5	12.7	17.1	20.6	23.5	28.0	31.8	20.6	23.5	28.0	31.8	41.8	54.0
		1000	12.6	17.0	25.4	34.2	41.2	47.1	56.0	63.6	41.2	47.1	56.0	63.6	83.6	108.0
D: 1		1500	18.9	25.5	38.1	51.3	61.8	70.6	84.0	95.4	61.8	70.6	84.0	95.4	125.4	162.0
Displacement	cm³/rev		12.6	17.0	25.4	34.2	41.2	47.1	56.0	63.6	41.2	47.1	56.0	63.6	83.6	108.0
Max pump speed																
continuous	rpm		2300	2300	2300	2300	1900	1900	1900	1900	1900	1900	1900	1900	1500	1500
limited			3000	3000	3000	3000	2500	2500	2500	2500	2500	2500	2500	2500	2000	2000
Max working pressure	bar		400	400	400	400	400	400	400	350	400	400	400	400	400	400
Weight	kg		8.7	8.6	8.9	8.8	12.3	12.3	12.3	12.2	14.3	14.3	14.3	14.1	19.0	19.0
Dimensions	mm	Α	101	101	101	101	117	117	117	117	119	119	119	119	128	128
		В	117	117	117	117	130	130	130	130	130	130	130	130	147	147
		С	209	209	209	209	235	235	235	235	237	237	237	237	262	262
		D	99	99	99	99	109	109	109	109	109	109	109	109	126	126
		E	97	97	97	97	112	112	112	112	112	112	112	112	126	126
		F	89	89	89	89	99	99	99	99	99	99	99	99	115	115
		G	97	97	97	97	106	106	106	106	106	106	106	106	123	123
		Н	38	38	38	38	38	38	38	38	38	38	38	38	50	50
			50	50	50	50	50	50	50	50	50	50	50	50	64	64
SAE standard		I				SAE								AE C		
						13T-16/3								2/24DP		
		J	41	41	41	41	41	41	41	41	56	56	56	56	56	56
		K	101.6	101.6	101.6	101.6	101.6	101.6	101.6	101.6	127.0	127.0	127.0	127.0	127.0	127.0
	100.0	L	89.8	89.8	89.8	89.8	89.8	89.8	89.8	89.8	114.5	114.5	114.5	114.5	114.5	114.5
	ISO G	P	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	1	1
	ISO G	Q	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
Tare-weight torque (M)	Nm		6.9	6.9	7.4	7.4	13	13	13	13	13	13	13	13	21	21
Direction of rotation	Let	ft (L) or Ri	ight (R)													

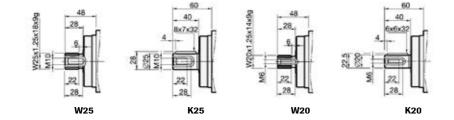
SCP 012-130 ISO

SCP 012-130 ISO is a series of piston pumps with a fixed displacement for mobile and stationary hydraulics.

SCP 012-130 ISO covers the entire displacement range 12-130 cm% ev. at a maximum pressure of 400 bar. The pump's well dimensioned, double tapered roller bearings permit high shaft loads and lead to excellent speed characteristics. The pump is drained externally. It is speed-optimised and therefore supplied for either left (L) or right (R) rotation direction.

Other advantages:


- · High maximum speed while maintaining low noise levels
- Smooth operation over the entire speed range
- Long life due to high demands on material selection, such as bearings, seals, etc.


ta and drawings visit: **www.sunfab.co**m

SCP 012-130 ISO				012	017	025	034	040	047	056	064	084	090	108	130
Nominal oil flow									I.	/min					
at pump speed		rp	n 500	6.3	8.5	12.7	17.1	20.6	23.5	28.0	31.8	41.5	45.4	54.0	65.0
			1000	12.6	17.0	25.4	34.2	41.2	47.1	56.0	63.6	83.6	90.7	108.0	130.0
			1500	18.9	25.5	38.1	51.3	61.8	70.6	84.0	95.4	125.4	136.1	162.0	195.0
Displacement		cm ³ /re	V	12.6	17.0	25.4	34.2	41.2	47.1	56.0	63.6	83.6	90.7	108.0	130.0
Max working pressure		MF	а	40	40	40	40	400	400	40	40	40	40	40	35
Max pump speed		n _{max (1)} rp	n	3300	3200	2550	2250	2200	2200	2100	2050	1700	1700	1700	1600
	пπ	n max limit (2)		6000	5700	4700	4550	4300	4300	3750	3700	3350	3000	3000	2900
Max power		k\	٧	25	35	40	50	55	65	75	85	90	95	120	120
Weight			g	7.5	7.5	8.5	8.5	15.5	15.5	15.5	15.5	27.0	27.0	29.5	29.5
Mass moment of inertia (x	10 ⁻³)	kg n	1 ²	0.9	0.9	1.1	1.1	2.6	2.6	2.6	2.6	7.4	7.4	7.4	7.4
Direction of rotation	Left (L)	or Right (R)													

(1) The values shown are valid for an absolute pressure of 1 bar at the suction inlet.
(2) By increase of the input pressure the rotational speeds can be increased to the max. admissible speed, n max limit.

Right-hand design R. Left-hand design L has pressure outlets on the opposite side

Pumps fixed dual flow

SCPD 56/26 DIN

Sunfab dual flow pump is ideal for vehicles which require two different

For vehicles with several types of hydraulic equipment, a large pump with a single flow is often a poor compromise. Certain parts of the equipment run too fast, others too slowly or too much heat is generated. A Sunfab dual flow pump is both the optimum technical and most economical solution for this.

Sunfab dual flow pumps are available with two equal large flows or one small and one large flow. The latter can give three different total flows: the small, the large and the combined. Where there is a need for different pressure levels, the flow and the pressure can be combined for a maximum use of the permitted power

Several system solutions:

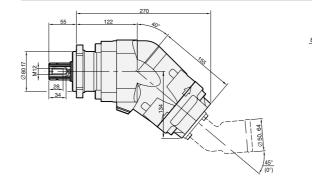
- Two separate circuits
- Parallel operation
- Torque limiting

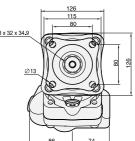
SCPD 56/26 DIN is a double pump with two separate flows of different sizes.

SCPD 56/26 DIN gives 56.0 and 26.0 cm3/rev. and supports a maximum operating pressure of 400 bar. It can effectively be directly mounted on gear boxes equipped with engageable and disengageable power

It is speed optimised and therefore supplied for either left (L) or right (R) rotation direction.

Other advantages:


- · High self-priming speed
- Constant low noise level
- Long life due to high demands on material selection, such as bearings, seals, etc.
- O-rings on all contact surfaces as well as double shaft seals



ata and drawings visit: www.sunfab.com

SCPD 56/26 DIN

3CPD 36/26 DIN					
Theoretical oil flow A+B		rpm	l/min		
at pump speed		600	33.5 + 15.5 = 49		
		1000	56.0 + 26.0 = 82		
		1200	67.0 + 31.0 = 98		
		1500	84.0 + 39.0 = 123		
		1800	100.5 + 46.5 = 147		
Displacement A+B	cm³/rev	56.0 + 26.0			
Max pump speed	rpm	1850			
Max working pressure	bar	400			
Weight	kg	18			
Tare-weight torque without valve	Nm	21			
Nominal power at pressure		rpm	200 Bar	300 Bar	400 Bar
and pump speed		600	11.2 + 5.2 = 16.4 kW	16.8 + 7.8 = 24.6 kW	22.4 + 10.4 = 32.8 kW
		1200	22.4 + 10.4 = 32.8 kW	33.6 + 15.6 = 49.2 kW	44.8 + 20.8 = 65.6 kW
		1800	33.6 + 15.6 = 49.2 kW	50.4 + 23.4 = 73.8 kW	67.2 + 31.2 = 98.4 kW
Nominal torque on pump shaft			200 Bar	300 Bar	400 Bar
at different pressures			178 + 83 = 261 Nm	267 + 124 = 391 Nm	356 + 165 = 521 Nm
Direction of rotation	Left (L) or Right (R)				

Spline Shaft: DIN 5462 / ISO14 ISO 7653-D

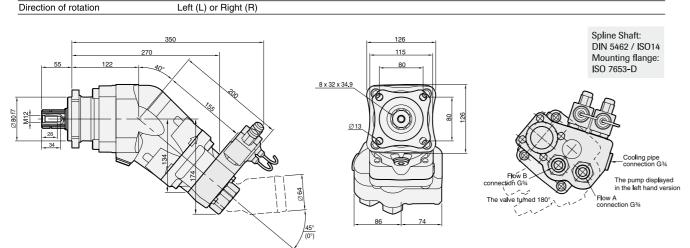
Pumps fixed dual flow

SCPD 56/26 DIN By-Pass

For more information, technical ita and drawings visit: **www.sunfab.com**

With two separate flows and a directly mounted By-Pass valve, the Sunfab's SCPD 56/26 By-Pass DIN is the most flexible compact fixed flow pump on the market.

SCPD 56/26 DIN By-Pass is ideal for combination vehicles which require different flows and where there is a need to operate equipment while moving. The pump is primarily intended for engine-mounted power take-offs.


The constant engagement is made possible by the By-Pass valve, which immediately relieves the load on the pump and power take-off when oil is not required. The pressure drop of the By-Pass valve is very low, so its function is energy efficient.

Other advantages:

- The By-Pass valve can relieve the load from full operating pressure of 400 bar, which allows emergency stop function
- The valve's 24 V solenoids have integrated electrical cables which meet protection class ADR

SCPD 56/26 DIN By-Pass					
Theoretical oil flow A+B		rpm	I/min		
at pump speed		600	33.5 + 15.5 = 49		
		1000	56.0 + 26.0 = 82		
		1200	67.0 + 31.0 = 98		
		1500	84.0 + 39.0 = 123		
		1800	100.5 + 46.5 = 147		
Displacement A+B	cm³/rev	56.0 + 26.0		п	
Max pump speed A+B	rpm	1850			
Max pump speed A	rpm	1850		9 5	
Max pump speed B	rpm	2200			
Max pump speed, relieved	rpm	2700			
Max working pressure	bar	400			
Weight without valve	kg	18			
Weight with valve	kg	22.5			
Tare-weight torque without valve	Nm	21			
Tare-weight torque with valve	Nm	25.5			
Nominal power at pressure		rpm	200 Bar	300 Bar	400 Bar
and pump speed		600	11.2 + 5.2 = 16.4 kW	16.8 + 7.8 = 24.6 kW	22.4 + 10.4 = 32.8 kW
		1200	22.4 + 10.4 = 32.8 kW	33.6 + 15.6 = 49.2 kW	44.8 + 20.8 = 65.6 kW
		1800	33.6 + 15.6 = 49.2 kW	50.4 + 23.4 = 73.8 kW	67.2 + 31.2 = 98.4 kW
Nominal torque on pump shaft			200 Bar	300 Bar	400 Bar
at different pressures			178 + 83 = 261 Nm	267 + 124 = 391 Nm	356 + 165 = 521 Nm

Pumps fixed dual flow

SCPD 76/76 DIN

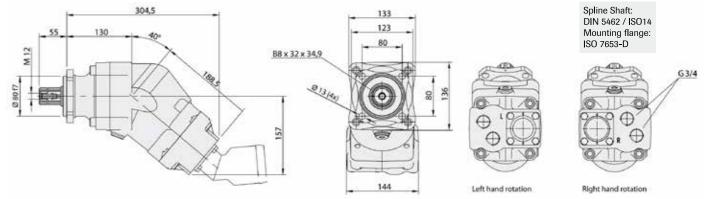
For more information, technical data and drawings visit: www.sunfab.com

SCPD 76/76 DIN is a dual flow pump with two separate flows of equal sizes.

SCPD 76/76 DIN gives a maximum flow of 127 + 127 = 254 lit/min and supports a maximum working pressure of 350 bar. It can effectively be directly mounted on gear boxes equipped with engageable and disengageable power take-offs.

SCPD 76/76 DIN is a modern, compact pump, which meets the market's high demands on flow performance, pressure, efficiency and small installation dimensions. It is speed optimized and therefore supplied for either left (L) or right (R) rotation direction.

SCPD 76/76 DIN is superior by offering two big flows in combination with extremely compact size. The compact size makes it possible to mount the pump directly on the power take-off in very restricted spaces.


Other advantages:

- Large displacement gives the possibility of low engine speeds and low noise levels.
- Long life due to high demands on material selection, such as bearings, seals, etc.
- O-rings on all contact surfaces as well as double shaft seals eliminate oil leakage from the pump and power takeoff.
- Highest displacement-to-size-ratio on the market.

SCPD 76/76 DIN

OOI D 70/70 DIN					
Theoretical oil flow			I/min		
at pump speed	rpm	500	37.5 + 37.5 = 75		
		1000	75.0 + 75.0 = 150		
		1500	127.0 + 127.0 = 254		
Displacement	cm³/rev	75 + 75			
Max pump speed					
continuous	rpm	1500			
limited		1700			
Max working pressure	bar	350			
Weight	kg	23.2			
Tare-weight torque without valve	Nm	34.5			
Theoretical power at pressure and pump speed			200 Bar	250 Bar	350 Bar
	rpm	500	12.5 + 12.5 = 25.0 kW	15.6 + 15.6 = 31.2 kW	21.9 + 21.9 = 43.8 kW
		1000	25.0 + 25.0 = 50.0 kW	31.3 + 31.3 = 62.6 kW	43.8 + 43.8 = 87.6 kW
		1500	37.5 + 37.5 = 75 kW	46.9 + 46.9 = 93.8 kW	65.6 + 65.6 = 131.2 kW
Nominal torque on pump shaft			200 Bar	250 Bar	350 Bar
at different pressures			239 + 239 = 478 Nm	298 + 298 = 596 Nm	418 + 418 = 836 Nm
Direction of rotation	Left (L) or	Right (R)			

Pumps fixed dual flow

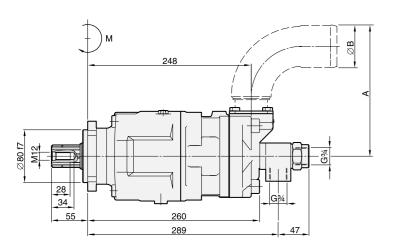
SLPD 20/20-64/32 DIN

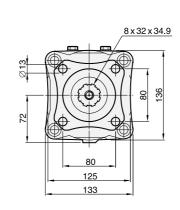
SLPD 20/20-64/32 DIN is a series of in-line dual flow pumps with extremely low noise levels for demanding mobile hydraulics.

SLPD 20/20-64/32 DIN comes in eight different sizes, where three models feature differentiated flows. Pumps with differentiated flow increase the field of application as they can provide three different flows: one small, one large and one combined flow. Maximum pressure is 330-350 bar depending on the model. Its slim pump housing makes direct mounting on the power take-off possible in very confined areas. SLPD 20/20-64/32 DIN is also ideal for installation using a frame bracket via an intermediate shaft.

It is available in a version with a Savtec valve for applications where the hydraulics need to be used while the vehicle is on the move.

Other advantages:


- Independent direction of rotation
- A cost effective total solution in relation to a conventional installation using two pumps with a splitter gear box
- Smooth operation over the entire speed range
- Long life due to high demands on material selection, such as bearings, seals, etc.
- O-rings on all contact surfaces as well as double shaft seals



data and drawings visit: www.sunfab.com

SI PD 20/20-64/32 DIN

3LPD 20/20-04/3	Z DIN									
Theoretical oil flow						I/min				
at pump speed	rpm	500	10.1 + 10.1	13.7 + 13.7	20.3 + 10.1	16.9 + 16.9	27.4 + 13.7	22.9 + 22.9	26.2 + 26.2	31.5 + 15.7
		1000	20.3 + 20.3	27.5 + 27.5	40.7 + 20.3	33.9 + 33.9	54.9 + 27.5	45.8 + 45.8	52.5 + 52.5	63.0 + 31.5
		1500	30.4 + 30.4	41.3 + 41.3	61.0 + 30.4	50.8 + 50.8	82.3 + 41.2	68.7 + 68.7	78.7 + 78.7	94.5 + 47.2
Displacement	cm³/rev		20.3 + 20.3	27.5 + 27.5	40.7 + 20.3	33.9 + 33.9	54.9 + 27.5	45.8 + 45.8	52.5 + 52.5	63.0 + 31.5
Max pump speed	rpm		2200	1800	2200	2200	1800	1800	1600	1600
Max working pressure	bar		350	350	350	330	350	330	330	350
Weight	kg		22	22	22	22	22	22	22	22
Dimensions	mm	Α	133	133	133	133	166	166	166	166
Min. dimensions		В	50	50	50	50	64	64	64	64
Tare-weight torque (M)	Nm		26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5
Direction of rotation	Independent									

Spline Shaft:

ISO 7653-D

DIN 5462 / ISO14

Mounting flange:

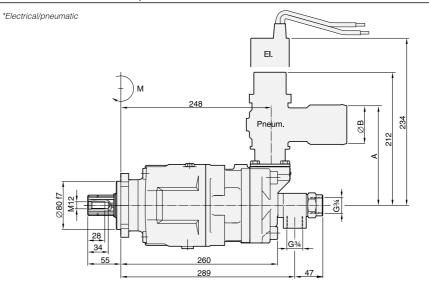
Pumps fixed dual flow

SLPD 20/20-64/32 DIN SAVTEC

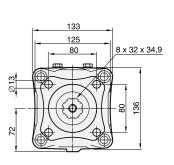
SLPD 20/20-64/32 DIN Savtec is equipped with a SAVTEC shut-off valve. Using a Savtec valve makes it possible to control the SLPD pump so it only feeds oil when required.

SLPD 20/20-64/32 DIN Savtec's valve is available for electrical 24 V or pneumatic remote control. The signal is obtained from a panel switch or automatically from, e.g. the parking brake, pressure sensor or diode gate. With a closed Savtec valve it generates neither flow nor pressure, and in doing so does not load the power take-off. This has a positive effect on fuel economy. SLPD 20/20-64/32 DIN Savtec features extra lubrication ducts on the bearings for lubrication even when the pump is run with the Savtec-valve closed.

The pump comes in eight different sizes, where three models feature differentiated flows. Pumps with differentiated flow increase the field of application as they can provide three different flows: one small, one large and one combined flow. Max pressure is 330-350 bar depending on the model.


Other advantages:

- Independent direction of rotation
- A cost effective total solution in relation to a conventional installation using two pumps in a splitter gear box
- Extremely low noise level
- Smooth operation over the entire speed range
- Long life due to high demands on material selection, such as bearings, seals, etc.
- O-rings on all contact surfaces as well as double shaft seals eliminate oil leakage from the pump and power take-off
- The Savtec valve can also be used as an emergency stop



For more information, technical data and drawings visit: www.sunfab.com

SLPD 20/20-64/32	DIN SAVTEC		20/20	28/28	40/20	35/35	56/28	46/46	53/53	64/32
Theoretical oil flow						I/min				
at pump speed	rpm	500	10.1 + 10.1	13.7 + 13.7	20.3 + 10.1	16.9 + 16.9	27.4 + 13.7	22.9 + 22.9	26.2 + 26.2	31.5 + 15.7
		1000	20.3 + 20.3	27.5 + 27.5	40.7 + 20.3	33.9 + 33.9	54.9 + 27.5	45.8 + 45.8	52.5 + 52.5	63 + 31.5
		1500	30.4 + 30.4	41.3 + 41.3	61.0 + 30.4	50.8 + 50.8	82.3 + 41.2	68.7 + 68.7	78.7 + 78.7	94.5 + 47.2
Displacement	cm³/rev		20.3 + 20.3	27.5 + 27.5	40.7 + 20.3	33.9 + 33.9	54.9 + 27.5	45.8 + 45.8	52.5 + 52.5	63.0 + 31.5
Max pump speed	rpm		2200	1800	2200	2200	1800	1800	1600	1600
Max speed, idling	rpm		3000	2500	3000	3000	2500	2500	2500	2500
Max working pressure	bar		350	350	350	330	350	330	330	350
Weight *	kg		24.5/23.5	24.5/23.5	24.5/23.5	24.5/23.5	24.5/23.5	24.5/23.5	24.5/23.5	24.5/23.5
Dimensiones	mm	Α	133	133	133	133	166	166	166	166
Min. dimensiones		В	50	50	50	50	64	64	64	64
Tare-weight torque *	(M) Nm	·	32.5/29.5	32.5/29.5	32.5/29.5	32.5/29.5	32.5/29.5	32.5/29.5	32.5/29.5	32.5/29.5
Direction of rotation	Independent									

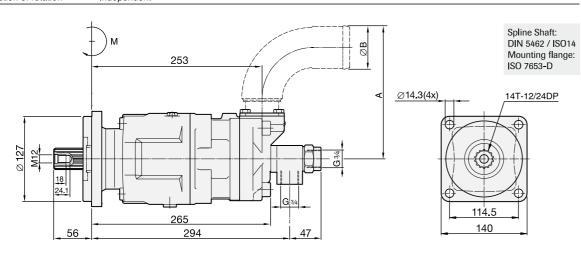
Spline Shaft: DIN 5462 / ISO14 Mounting flange: ISO 7653-D

Pumps fixed dual flow

SLPD 40/20-64/32 SAE

SLPD 40/20-64/32 SAE is a series of in-line double pumps with extremely low noise levels for demanding mobile hydraulics.

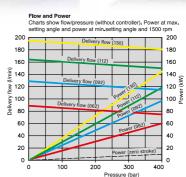
SLPD 40/20-64/32 SAE pumps are equipped with shafts and flanges according to the SAE-C standard. They are available in six different sizes. It's slim pump housing enables direct installation on the power take-off in very confined spaces. SLPD is also easy to install with frame mountings via an intermediate shaft. The high level of reliability is based on the choice of materials, hardening methods, surface structures and the quality assured manufacturing process.

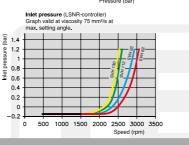

Other advantages:

- Independent direction of rotation
- A cost effective total solution in relation to a conventional installation using two pumps with a splitter gear box
- · Smooth operation over the entire speed range
- Long life due to high demands on material selection, such as bearings, seals, etc.
- · O-rings on all contact surfaces as well as double shaft seals eliminate oil leakage from the pump and power

data and drawings visit: **www.sunfab.co**m

01 00 10 100 01 100 01	-							
SLPD 40/20-64/32 S/	AE -		40/20	35/35	56/28	46/46	53/53	64/32
Theoretical oil flow					I/min			
at pump speed	rpm	500	20.3 + 10.1	16.9 + 16.9	27.4 + 13.7	22.9 + 22.9	26.2 + 26.2	31.5 + 15.7
		1000	40.7 + 20.3	33.9 + 33.9	54.9 + 27.5	45.8 + 45.8	52.5 + 52.5	63.0 + 31.5
		1500	61.0 + 30.4	50.8 + 50.8	82.3 + 41.2	68.7 + 68.7	78.7 + 78.7	94.5 + 47.2
Displacement	cm³/rev		40.7 + 20.3	33.9 + 33.9	54.9 + 27.5	45.8 + 45.8	52.5 + 52.5	63.0 + 31.5
Max pump speed	rpm		2200	2200	1800	1800	1600	1600
Max working pressure	bar		350	330	350	330	330	350
Weight	kg		22	22	22	22	22	22
Dimensions	mm	Α	133	133	166	166	166	166
Min. dimensions		В	50	50	64	64	64	64
Tare-weight torque (M)	Nm		26.5	26.5	26.5	26.5	26.5	26.5
Direction of rotation	Independent					•		


Pumps variable flow



SVH 062, 092, 112, 130

Sunfab SVH is a variable axial piston pump for load sensing systems, designed for direct installation on the truck's power take-off.

SVH supports a maximum pressure up to 450 bar, and is available in the sizes 62, 92, 112 and 130 cm3/rev. It is intended for use on forestry cranes, general cargo cranes, suction vehicles, refuse collection vehicles, etc. SVH variable pumps uniquely feature a slim pump housing which permits direct mounting on the

Other advantages:

- Short reaction time when resetting the flow
- Compact installation dimensions
- High pressure
- · Low noise level

Description of pump controllers, SVH 062, 092, 112 & 130:

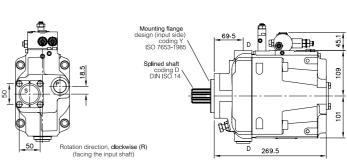
LSNR = Load-Sensing controller with integrated pressure limitation.

NR = Pressure controller, adjustable directly at the pump. The Pressure controller automatically maintains a constant system pressure independent of the required flow. Therefore it is ideally suited for constant pressure systems, where differing flow is required or as efficient pressure limitation of the hydraulic system.

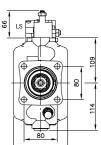
/ZL (SVH 062, 092, 112) = Intermediate plate with power controller (torque limitation)

"Pressure x Displacement" is held constant.

Adjustment range: 25-100% of max. drive torque.


/ZW = Angled intermediate plate (45°) mandetory for mounting controller at pumps with radial inlet and outlet.

/L (SVH 130) = Power controller for SVH 130. Adjustment range: 200-700 Nm



SVH 062, 092, 112, 130		SVH 062	SVH 092	SVH 112	SVH 130
Geometric displacement V _g	cm³/rev.	62.4	87.2	110.4	130
Nom. pressure p _{nom}	bar	350	350	350	400
Pressure p _{max}	bar	400	400	400	450
Angle of the swash plate		21.5°	21.5°	21.5°	21.5°
Required inlet pressure (absolute) for open circuit	bar	0.85	0.85	0.85	0.85
Max. permissible inlet pressure, absolute	bar	2	2	2	2
Max. permissible housing pressure, absolute	bar	3	3	3	3
Max. permissible drive torque (flange/shaft)	Nm	430	530	900	900
Max. torque for the pump (with power controller)	Nm	430	530	600	700
Max. permissible torque for the thru-shaft, dep. on flange	Nm	100	530	600	700
Max. rev. rating when self priming and max. angle of the swash plate	rpm	2500	2300	2200	2100
at 1 bar absolute inlet pressure					
Min. rev. rating for permanent running	rpm	500	500	500	500
Required torque at 100 bar	Nm	100	151	184	230
Drive power for 250 bar and 2000 rpm	kW	53	79,5	97.2	120
Mass (weight) complete with controller	kg	24	27	30	30.8
Tare weight torque	Nm	30	35.3	40	40
Inertia moment	kg m²	0.005	0.008	0.01	0.011
Sound level at 250 bar, 1500 rpm and max. swash plate angle	dB(A)	75	75	75	75

(Measured in a sound measuring room DIN ISO 4412, distance 1 m)

SCM 012-130 DIN

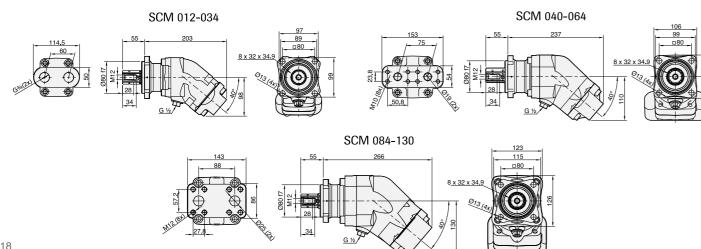
SCM 012-130 DIN is a series of axial piston motors particularly suitable for mobile hydraulics. SCM 012-130 DIN is of the bent-axis type with spherical pistons.

The design gives a compact motor with few moving parts, high starting torque and high operational reliability. It covers the entire displacement range 12-130 cm³/rev. with max. pressure 400 bar.

It's high level of reliability is due to the choice of materials, hardening methods, surface structures and the quality assured manufacturing process.

Other advantages:

- Smooth operation over the entire speed range
- · High efficiency
- Suitable for applications with high angular accelerations due to its high rotary stiffness (timing gear)



ta and drawings visit: **www.sunfab.com**

SCM 012-130 DIN		012	017	025	034	040	047	056	064	084	108	130
Displacement	cm³/rev	12.6	17.0	25.4	34.2	41.2	47.1	56.7	63.5	83.6	108.0	130.0
Working pressure max intermittent max continuous	MPa	40 35	33 28									
Revolutions max intermittent max continuous min continuous	rpm	3000 2400 300	3000 2400 300	3000 2400 300	3000 2400 300	2500 2000 300	2500 2000 300	2500 2000 300	2500 2000 300	2000 1600 300	2000 1600 300	2000 1600 300
Power max intermittent max continuous	kW	18 14	24 19	36 29	49 39	57 46	65 52	78 62	88 70	93 74	120 96	124 99
Starting torque theoretical value	Nm/MPa	2.0	2.7	4.0	5.4	6.6	7.5	8.9	10.0	13.3	17.2	20.7
Moment of inertia (x 10 ³)	kg m²	0.9	0.9	1.1	1.1	2.6	2.6	2.6	2.6	7.4	7.4	7.4
Max intermittent housing pressure	MPa	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Weight	kg	8.4	8.4	8.6	8.6	13.0	13.0	13.0	13.0	18.2	18.2	18.2

nittent operation refers to a max of 6 seconds per minute, representing e.g. peaks in rotational speed during unloading and acceleration.

Data concerning RPM is based on maximum permitted peripheral velocity for the tapered roller bearings. Max intermittent power may depend on application. For further information please contact Sunfab. Continuous power data is based on maximum output power without external cooling of the motor housing. Intermittent duty is defined as follows: max 6 seconds per minute, e.g. peak RPM when unloading or accelerating.

Motors fixed

SCM 010-130 SAE

SCM 010-034 SAE B2

Sunfab's SCM 010-130 SAE is a range of robust axial piston motors especially suitable for mobile hydraulics.

SCM 010-130 SAE is of the bent-axis type with spherical pistons. The design results in a compact motor with few moving parts, high starting torque and high reliability. It covers the entire displacement range 10-130 cm³/rev. at a maximum pressure of 400 bar. It features double tapered roller bearings, which permits high shaft loads and gives superb speed performance.

The high level of reliability is based on the choice of materials, hardening methods, surface structures and the quality assured manufacturing process.

Other advantages:

- · High maximum speed
- Smooth operation over the entire speed range
- · Available in many different configurations of shafts and connections
- · High efficiency
- Speed sensor available as option
- Suitable for applications with high angular accelerations due to its high rotary stiffness (timing gear)

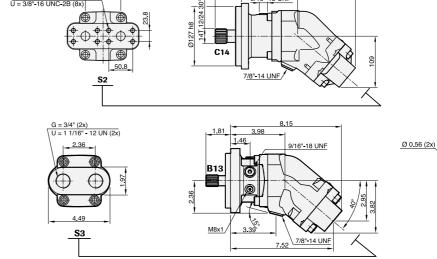
Sunfab also offers a two-bolt flange, SAE B2 010- 034 in the SCM family.

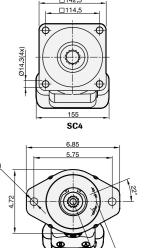
The design features double tapered roller bearings, which permits high shaft loads and gives superb speed

performanc

Other advantages:

- · High maximum speed
- Smooth operation over the entire speed range
- · Available in many different configurations of shafts and connections
- High efficiency
- · Speed sensor available as option
- Suitable for applications with high angular accelerations due to its high rotary stiffness (timing gear)


For more information, technical


		040	040	047	005	005	004	004	0.40	0.47	050	004	004	004	000	000	400	400	400
SCM 010-130 SAE		O10 SAE B	012 SAE B	017 SAE B	025 SAE B	025 SAE C	034 SAE B	034 SAE C	040 SAE C	047 SAE C	056 SAE C	064 SAE C	084 SAE C	084 SAE D	090 SAE C	090 SAE D	108 SAE C	108 SAE D	130 SAE D
Displacement	cm³/rev	9.6	12.6	17.0	25.4	25.4	34.2	34.2	41.2	47.1	56.7	63.5	83.6	83.6	90.7	90.7	108.0	108.0	130.0
Working pressure max intermittent max continuous	MPa	40 35	40 35	40 35	40 35	40 35	40 35	40 35	40 35	40 35	40 35	40 35	35 30						
Revolutions																			
max intermittent	rpm	8250	8250	8250	6500	6500	6500	6500	5900	5900	5900	5900	4800	4600	4800	4600	4800	4600	4600
max continuous		7500	7500	7500	5900	5900	5900	5900	5300	5300	5300	5300	4400	4200	4400	4200	4400	4200	4200
min continuous		300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300
Power	11/4/1				IJ	$\Pi X \Pi$			7 \								7 6		
max intermittent	kW	41	50	70	80	80	110	110	120	135	165	180	200	190	215	205	255	245	255
max continuous		15	20	25	40	40	55	55	60	65	80	90	100	100	110	110	130	130	135
Starting torque theoretical value	Nm/MPa	1.5	2.0	2.7	4.0	4.0	5.4	5.4	6.6	7.5	8.9	10.0	13.3	13.3	14.4	14.4	17.1	17.1	20.5
Mass moment of inertia (x 10 ⁻³)	kg m²	0.9	0.9	0.9	1.1	1.1	1.1	1.1	2.6	2.6	2.6	2.6	6.3	7.4	6.3	7.4	6.3	7.4	7.4
Weight	kg	9.0	9.0	9.0	9.0	9.0	9.0	9.0	15.0	15.0	15.0	15.0	18.0	35.0	18.0	35.0	18.0	35.0	35.0

Information about technical data

Data concerning RPM is based on maximum permitted peripheral velocity for the tapered roller bearings. Max intermittent power may depend on application. For further information please contact Sunfab. Continuous power data is based on maximum output yower without external cooling of the motor housing. Intermittent duty is defined as follows: max 6 seconds per minute, e.g. peak RPM when unloading or accelerating.

SAE J518 -3/4" 119.25

SCM 010-130 ISO

SCM 010-130 ISO is a range of robust axial piston motors especially suitable for mobile hydraulics.

SCM 010-130 ISO is of the bent-axis type with spherical pistons.

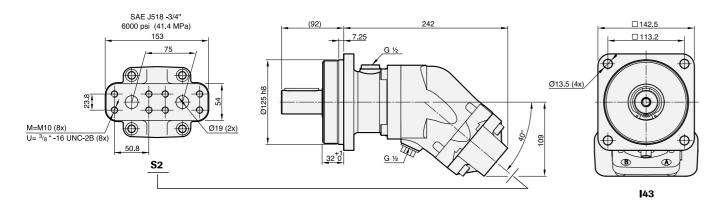
The design results in a compact motor with few moving parts, high starting torque and high reliability. It covers the entire displacement range 10-130 cm³/rev. at a maximum pressure of 400 bar. It's well dimensioned, double tapered roller bearings permit high shaft load's and lead to excellent speed characteristics. The motor's high level of reliability is based on the choice of materials, hardening methods, surface structures and the quality assured manufacturing process.

Other advantages:

- High maximum speed
- Smooth operation over the entire speed range
- · Available in many different configurations of shafts and connections
- · High efficiency
- · Speed sensor available as option
- Suitable for applications with high angular accelerations due to its high rotary stiffness (timing gear)

ta and drawings visit: www.sunfab.com

SCM 010-130 ISO


00m 010 100 100														
Displacement	cm³/rev.	9.6	12.6	17.0	25.4	34.2	41.2	47.1	56.7	63.5	83.6	90.7	108.0	130.0
Working pressure														
max. intermittent	MPa	40	40	40	40	40	40	40	40	40	40	40	40	35
max. continuous	MPa	35	35	35	35	35	35	35	35	35	35	35	35	30
Revolutions														
max. intermittent	rpm	8800	8800	8800	7000	7000	6300	6300	6300	6300	5200	5200	5200	5200
max. continuous	rpm	8000	8000	8000	6300	6300	5700	5700	5700	5700	4700	4700	4700	4700
min. continuous	rpm	300	300	300	300	300	300	300	300	300	300	300	300	300
Power														
max. intermittent	kW	14	54	74	86	115	125	145	175	195	215	230	275	285
max. continuous	kW	15	20	25	40	55	60	65	80	90	100	110	130	135
Start torque theoretical value	Nm/MPa	1.5	2.0	2.7	4.0	5.4	6.6	7.5	8.9	10.0	13.3	14.4	17.1	20.5
Mass moment of inertia (x 10 ⁻³)	kg m²	0.9	0.9	0.9	1.1	1.1	2.6	2.6	2.6	2.6	7.4	7.4	7.4	7.4
Weight	kg	8.5	8.5	8.5	9.5	9.5	16.5	16.5	16.5	16.5	28.0	30.5	30.5	30.5

Information about technical data

Data concerning RPM is based on maximum permitted peripheral velocity for the tapered roller bearings.

Max intermittent power may depend on application. For further information please contact Sunfab.

Continuous power data is based on maximum output power without external cooling of the motor housing mittent duty is defi ned as follows: max 6 seconds per minute, e.g. peak RPM when unloading or accelerating

Motors fixed

ESUNFAB

SCM 025-108 M2

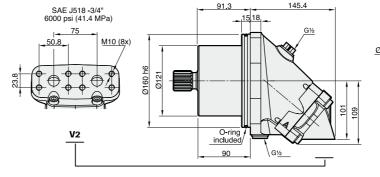
Sunfab's SCM 025-108 M2 is a range of robust axial piston motors with cartridge flange especially suitable for winch-, slewing-, wheel- and track drives.

SCM 025-108 M2 is of the bent-axis type with spherical pistons. The design results in a compact motor with few moving parts, high starting torque and high reliability. The SCM 025-108 M2 covers the entire displacement range 25-108 cm³/rev. at a maximum pressure of 400 bar.

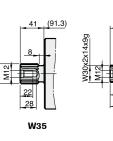
It's well dimensioned, double tapered roller bearings permit high shaft loads and lead to excellent speed characteristics. It's high level of reliability is based on the choice of materials, hardening methods, surface structures and the quality assured manufacturing process.

Other advantages:

- High maximum speed
- Smooth operation over the entire speed range
- Suitable for applications with high angular accelerations due to its high rotary stiffness (timing gear)


100	PARTY COLUMN	10700	The second second	Control of the last		2100× 4	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO	AND THE RESERVE	100000000000000000000000000000000000000
	025	034	040	047	056	064	084	090	108
cm³/rev	25.4	34.2	41.2	47.1	56.7	63.5	83.6	90.7	108.0
MPa	40	40	40	40	40	40	40	40	35
	35	35	35	35	35	35	35	35	00
rpm	7000	7000	6300	6300	6300	6300	5200	5200	5200
	6300	6300	5700	5700	5700	5700	4700	4700	4700
	300	300	300	300	300	300	300	300	300
kW	86	115	125	145	175	195	215	230	230
	40	55	60	65	80	90	100	110	110
Nm/MPa	4.0	5.4	6.6	7.5	8.9	10.0	13.3	14.4	17.1
kg m²	1.1	1.1	2.6	2.6	2.6	2.6	7.4	7.4	7.4
kg	11.0	11.0	18.3	18.3	18.3	18.3	26.0	26.0	26.0
	MPa rpm kW Nm/MPa kg m²	cm³/rev 25.4 MPa 40 35 rpm 7000 6300 300 300 kW 86 40 4.0 kg m² 1.1	cm³/rev 25.4 34.2 MPa 40 40 35 35 rpm 7000 7000 6300 6300 300 300 kW 86 115 40 55 Nm/MPa 4.0 5.4 kg m² 1.1 1.1	cm³/rev 25.4 34.2 41.2 MPa 40 40 40 35 35 35 rpm 7000 7000 6300 6300 6300 5700 300 300 300 kW 86 115 125 40 55 60 Nm/MPa 4.0 5.4 6.6 kg m² 1.1 1.1 2.6	cm³/rev 25.4 34.2 41.2 47.1 MPa 40 40 40 40 40 35 36 30 30 300 300 300 300 300 300 300 300 300 300 300 300 300 30 30 30 30 30 <	cm³/rev 25.4 34.2 41.2 47.1 56.7 MPa 40 40 40 40 40 40 40 35 36 30 30 30 30	cm³/rev 25.4 34.2 41.2 47.1 56.7 63.5 MPa 40 40 40 40 40 40 40 40 40 40 35 <td>cm³/rev 25.4 34.2 41.2 47.1 56.7 63.5 83.6 MPa 40 50 40 50 40 50 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40<!--</td--><td>cm³/rev 25.4 34.2 41.2 47.1 56.7 63.5 83.6 90.7 MPa 40</td></td>	cm³/rev 25.4 34.2 41.2 47.1 56.7 63.5 83.6 MPa 40 50 40 50 40 50 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 </td <td>cm³/rev 25.4 34.2 41.2 47.1 56.7 63.5 83.6 90.7 MPa 40</td>	cm³/rev 25.4 34.2 41.2 47.1 56.7 63.5 83.6 90.7 MPa 40

Information about technical data


Data concerning RPM are based on maximum premitted peripheral velocity of the tapered roller bearing.

Max intermittent power data may vary dependent on application. For further information please contact Sunfab. Continuous power data are based on maximum output power without external cooling of the motor housing.

nittent duty is defined as follows: max 6 seconds per minute, e q peak RPM when unloading or accelerating

Accessories

Sunfab By-Pass is a relief valve for the SAP and SCP pump providing remote switching between idling and operation.

By-Pass is used in installations where the power take-off is not disengaged during transport. These are usually found on vehicles fitted with hydraulic equipment that needs to be operated while on the move, for example, road maintenance vehicles, concrete mixers, refuse collection trucks, etc.

Other advantages:

- · Symmetrical design supports installation of the magnetic valve in different directions, and use on both right and left-hand rotating pumps
- · ATEX approved as an option
- Highly efficient due to low pressure drop

Splitter Gearbox

Splitter gearbox SZ mounted in a frame bracket, permits the assembly of two pumps on the same power take-off.

Splitter gearbox SZ provides unlimited freedom to combine pumps with different size flows.

Other advantages:

- · Suitable for all Sunfab pumps with DIN flange
- · Can be mounted horizontally or vertically

Tracpower PTO

Tracpower increases the speed of the tractor's power take-off 2.5 times, which gives better conditions for hydraulic operation.

Tracpower is the solution when the tractor's original hydraulics do not give sufficiently large flow and pressure.

Other advantages:

- · Suitable for all Sunfab pumps with DIN flange
- · Can be mounted horizontally or vertically

Power Take-Off

Sunfab's power take-off is the link between the vehicle and the pump. It can be mounted on the gearbox or the engine.

A wide range of power take-offs are available from Sunfab with different ratios and torques to fit most gearboxes. Together with Sunfab's extensive range of pumps these form unbeatable combinations both technically and economically and offer immense choice.

Sunfab's power take-offs are designed for direct mounting of all Sunfab pumps. The power take-off is supplemented with an adapter for intermediate shaft installation.

Other advantages:

- PTO adaptors
- Single PTO
- Double PTO
- Adapter for drive shaft
- SAE adapters

ata and drawings visit: **www.sunfab.com**

Accessories

Sunfab has a wide range of accessories that facilitates the mounting of pumps and motors

In applications where it is not possible to directly mount a pump or motor, Sunfab has a wide range of adapters, flanges and brackets to help facilitate the installation. For example mounting on a countershaft due to lack of space, two or more pump gearboxes and compressors.

Adapter & Flanges

- · Adapter flange for splitter gearbox
- Adapter flanges
- · Splined drive flanges
- · Neutral drive flanges

Pump Brackets

- Frame attachments
- Pump brackets

Anti-cavitation Valve for SCM & Flushing Valve for SCM

The Sunfab anti-cavitation valve is designed to be mounted directly on the hydraulic motor and prevents cavitation problems when the load is running down e.g. vacuum pumps.

Sunfab's anti-cavitation valve is used to minimise the risk of cavitation damage in connection with insufficient inlet pressure.

This can occur, for example, in applications with a relatively large rotating mass with a long run-down time (e.g. fan operations). The hydraulic motor must have a defined direction of rotation when using Sunfab's anti- cavitation valve. The valve can be adapted to both left and right rotation.

The flushing valve is required when operating at high speeds and power levels.

The flushing valve ensures that the oil temperature inside the motor housing remains at the recommended level. Excessively high temperatures reduce the service-life of the shaft seal and the viscosity of the oil deteriorates.

Injector

Sunfab Injector K-JET 2 is a basic technical solution for the recirculation of oil in closed hydraulic systems which is cost efficient and saves weight.

K-JET 2 recirculates the oil with an injector. This function replaces the previous standard of feed pressure pumps as compensation for leakage oil losses in the main circuit and any scavenging pumps for the cooling and filtering circuits.

Speed Sensor for SCM

For hydraulic motors that require a specific given speed Sunfab offers a speed sensor with electronic measurement.

Sunfab speed sensor is available for any ISO/SAE motor (excluding cartridge motors), displacement 012-130 cc. The sensor is a two channel hall effect sensor. The sensor has two frequency outputs both giving square wave signals, phase shifted. It can operate at high temperatures ~ 90° C.

The speed is detected from the gears on the cylinder block. Since the sensor is working with two channels, the rotation direction can be detected. The number of gears is 30 for all motor displacements. Motors manufactured prepared for speed sensor can also have a sensor fitted afterwards.

ตัวแทนจำหน่ายโดย

บริษัท เต็มตัน จำกัด

1/19 หมู่ 1 ต.พิมพา อ.บางปะกง จ.ฉะเชิงเทรา 24180 (ประเทศไทย)

โทรศัพท์. 097-248-2251, 52, 53 แฟกซ์. 038-571-665 อีเมลล์ : temton.crane@gmail.com www.temton.co.th