Loadmonitors - GAMMA series
Underload monitoring
Fault latch
Recognition of disconnected consumers
Suitable for VFI (10 to 100 Hz)
Supply voltage selectable via power modules / switching power supply
1 change-over contact
Width 22.5 mm
Industrial design

Technical data

1. Functions

Underload monitoring $(\cos \varphi)$ in 1- or 3-phase mains with adjustable threshold, fixed hysteresis, seperately adjustable timing for start-up supression and tripping delay and the following functions which are selected by means of rotary switch:

UNDER	Underload monitoring
UNDER $\overline{\overline{<}}$	Underload monitoring with recognition of
disconnected consumers (Rel.OFF if $\mathrm{I}=0$)	

2. Time ranges

Start-up suppression time:	1 s	100 s
Tripping delay:	0.1 s	40 s

3. Indicators

Green LED ON:
Green LED flashes: Yellow LED R ON/OFF: Yellow LED I=0 ON/OFF: Red LED ON/OFF:

Red LED flashes:
indication of supply voltage indication of start-up supression time indication of relay output indication of disconnected consumers indication of failure of the corresponding threshold
indication of tripping delay of the corresponding threshold

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN-Rail TS 35 according to EN 60715
Mounting position: any
Shockproof terminal connection according to VBG 4 (PZ1 required),
IP rating IP20. Tightening torque: max. 1 Nm
Terminal capacity:

$$
\begin{aligned}
& 1 \times 0.5 \text { to } 2.5 \mathrm{~mm}^{2} \\
& 1 \times 4 \mathrm{~mm}^{2} \\
& 2 \times 0.5 \text { to } 1.5 \mathrm{~mm}^{2} \\
& 2 \times 2.5 \mathrm{~mm}^{2} \text { flexible }
\end{aligned}
$$

with/without multicore cable end without multicore cable end with/without multicore cable end without multicore cable end
5. Input circuit

Supply voltage: 12 to 400 V a.c. 24 V d.c.
Tolerance:
Rated frequency:
Rated consumption:
Duration of operation:
Reset time:
Residual ripple for d.c.
Drop-out voltage:
Overvoltage category:
Rated surge voltage:
terminals A1-A2 (galvanically separated) selectable via power modules TR2 or via switching power supply SNT2 according to specification TR2 / SNT2 according to specification TR2 / SNT2 2VA (1.5W)
100\%
500ms
$>30 \%$ of the supply voltage
III (in accordance with IEC 60664-1) 4 kV

6. Output circuit

1 potential free change-over contact
Rated voltage: $\quad 250 \mathrm{~V}$ a.c.
Switching capacity: $\quad 750 \mathrm{VA}(3 \mathrm{~A} / 250 \mathrm{~V}$ a.c.)
If the distance between the devices is less than 5 mm .
Switching capacity: 1250 VA (5A / 250 V a.c.)
If the distance between the devices is greater than 5 mm .
Fusing: 5 A fast acting
Mechanical life: $\quad 20 \times 10^{6}$ operations
Electrical life: 2×10^{5} operations at 1000 VA resistive load
Switching frequency: max. 60/min at 100VA resistive load max. $6 / \mathrm{min}$ at 1000 VA resistive load (in accordance with IEC 60947-5-1)
Overvoltage category: III (in accordance with IEC 60664-1)
Rated surge voltage: 4 kV
7. Measuring circuit

Measured variable:
a.c. Sinus (10 to 100 Hz)

Measuring-input voltage:
1-phase mains $\quad 40$ to 415 V a.c.
(max. 300V against ground)
terminals L1i-L2/L3
3~ 40/23 to 415/240V, terminals L1i-L2-L3
3-phase mains
Overload capacity:
1-phase mains
3-phase mains
Input resistance:
3~500/289V
Measuring-input current: 0.5 to 10A, terminals L1i-L1k (for $\mathrm{l}>8 \mathrm{~A}$ distance $>5 \mathrm{~mm}$)
Overload capacity: 11A permanently
Input resistance: $\quad 5 \mathrm{~m} \Omega$
Switching threshold $\cos \varphi: 0.1$ to 1.0
Hysteresis:
Overvoltage category:
Rated surge voltage:
prox. 3°
(equivalent to 3% at $\cos \varphi=0.8$)
III (in accordance with IEC 60664-1)
4kV
8. Accuracy

Base accuracy:
Frequency response:
Adjustment accuracy:
Repetition accuracy:
Voltage influence:
Temperature influence: $\leq 0.1 \% /{ }^{\circ} \mathrm{C}$
9. Ambient conditions

Ambient temperature: $\quad-25$ to $+55^{\circ} \mathrm{C}$ (in accordance with IEC 60068-1) -25 to $+40^{\circ} \mathrm{C}$ (in accordance with UL 508)
Storage temperature: -25 to $+70^{\circ} \mathrm{C}$
Transport temperature: -25 to $+70^{\circ} \mathrm{C}$
Relative humidity: $\quad 15 \%$ to 85%
(in accordance with IEC 60721-3-3 class 3K3)
Pollution degree: $\quad 3$ (in accordance with IEC 60664-1)
Vibration resistance: $\quad 10$ to 55 Hz 0.35 mm
(in accordance with IEC 60068-2-6)
$15 \mathrm{~g} \mathrm{11ms}$
(in accordance with IEC 60068-2-27)

Functions

When the supply voltage U is applied, the output relay switches into on-position (yellow LED R) and the set interval of the start-up suppression (START) begins (green LED U flashes). If the current doesn't flow during the start-up supression the yellow LED I=0 is illuminated.
Changes of the measured power factor $(\cos \varphi)$ during this period do not affect the state of the output relay. After the interval has expired the green LED is illuminated steadily.

Underload monitoring (UNDER, UNDER+LATCH)
When the measured power factor falls below the value adjusted at the MIN-regulator, the set interval of the tripping delay (DELAY) begins (red LED MIN flashes). After the interval has expired (red LED MIN illuminated), the output relay switches into off-position (yellow LED R not illuminated). The output relay again switches into on-position (yellow LED R illuminated), when the measured power factor exceeds the value adjusted at the MIN-regulator by more than the fixed hysteresis.

Underload monitoring with fault latch (UNDER+LATCH)
When the measured power factor falls below the value adjusted at the MIN-regulator, the set interval of the tripping delay (DELAY) begins (red LED MIN flashes). After the interval has expired (red LED MIN illuminated), the output relay switches into off-position (yellow LED R not illuminated). If the measured power factor exceeds the value adjusted at the MIN-regulator by more than the fixed hysteresis, the ouput relay stays in off-position.
After resetting the failure (interrupting and re-applying the supply voltage), the output relay switches into on-position and a new measuring cycle begins with the set interval of the start-up suppression.

Recognition of disconnected consumers

Overview:

Function	U	$\mathrm{U}+\overline{\mathrm{L}}$	$\mathrm{U}+\overline{\mathrm{K}}+\mathrm{L}$
Relay if $\mathrm{I}=0$	ON	OFF	OFF
LED I $=0$ if $\mathrm{I}=0$	ON	ON	ON
Fault latch	no	no	yes

When the current flow between i and k is interrupted and no fault has been stored, the output acts as shown in the table.
When the current flow is restored, the measuring cycle is restarted with the set interval of the start-up supression.(START).

UNDER + $\bar{\ll}$

UNDER $+\overline{\bar{K}}+\mathrm{L}$

Fault latch (+LATCH)
If the fault latch is activated $(+\mathrm{L})$, the recognition of disconnected consumers is not stored. The fault latch only stores failures of underload monitoring!
After the interval of the start-up surpression the output relay switches into on-position if the current flow is restored, the measured power factor remains above the set threshold and his hysteresis and no failure is stored.

Functions

Connected to $3 \sim 400 \mathrm{~V}$ mains with power module 24 V a.c. without fault latch $\mathrm{I}_{\mathrm{N}}<10 \mathrm{~A}$

Connected to $1 \sim 230 \mathrm{~V}$ mains with power module 230 V a.c. without fault latch $\mathrm{I}_{\mathrm{N}}<10 \mathrm{~A}$

Connected to $3 \sim 400 \mathrm{~V}$ mains with power module 400 V a.c. and fault latch $I_{N}<10 \mathrm{~A}$

Connections

Connected to $3 \sim 400 \mathrm{~V}$ mains with power module 400 V a.c. and fault latch $\mathrm{I}_{\mathrm{N}}>10 \mathrm{~A}$

Dimensions

For your information:
Devices with batch number 205102 and below doesn't have an additional reversed recognition of disconnected consumers (+|<). They recognize disconnected consumers always as "good"-state which means the output relay switches into on-position (LED I=0 illuminated) if the current flow is interrupted and no fault is stored.

