Power factor monitoring $(\cos \varphi)$ in 1- or 3-phase

Loadmonitors - GAMMA series
 Multifunction
 Fault latch
 Recognition of disconnected consumers
 Suitable for VFI (10 to 100 Hz)
 Supply voltage selectable via power modules
 2 change-over contacts
 Width 22.5 mm
 Industrial design

Technical data

1. Functions

Load monitoring $(\cos \varphi)$ in 1- or 3-phase mains with adjustable threshold, timing for start-up supression and tripping delay separately adjustable and the following functions which are selectable by means of rotary switch:

OVER	Overload monitoring
OVER+LATCH	Overload monitoring with fault latch
UNDER	Underload monitoring
UNDER+LATCH	Underload monitoring with fault latch
WIN	Monitoring the window between Min and Max
WIN+LATCH	Monitoring the window between Min and Max
	with fault latch

2. Time ranges

	Adjustment rang	
Start-up suppression time:	$1 \mathrm{~s} \quad 100 \mathrm{~s}$	
Tripping delay:	$0.1 \mathrm{~s} \quad 40 \mathrm{~s}$	

3. Indicators

Green LED ON: Green LED flashing: Yellow LED R ON/OFF: Yellow LED I=0 ON/OFF: Red LED ON/OFF:

Red LED flashing:
indication of supply voltage indication of start-up supression time indication of relay output indication of disconnected consumers indication of failure of the corresponding threshold
indication of tripping delay of the corresponding threshold

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN-Rail TS 35 according to EN 60715
Mounting position: any
Shockproof terminal connection according to VBG 4 (PZ1 required),
IP rating IP20
Tightening torque: max. 1 Nm
Terminal capacity:
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end
5. Input circuit

Supply voltage:

12 to 400 V AC
24 V DC
Tolerance:
module
Rated frequency:
Rated consumption: Duration of operation:
Reset time:
Residual ripple for DC:
Drop-out voltage:
Overvoltage category:
Rated surge voltage:
terminals A1-A2 (galvanically separated) selectable via power modules TR2 or switching power supply SNT2 according to specification of power or switching power supply according to specification of power module or switching power supply 2VA (1.5W)
100\%
500ms
$>30 \%$ of the supply voltage
III (in accordance with IEC 60664-1) 4 kV
6. Output circuit

2 potential free change-over contacts
Rated voltage: $\quad 250 \mathrm{~V}$ AC
Switching capacity: $\quad 750 \mathrm{VA}$ (3A / 250V AC)
If the distance between the devices is less than 5 mm .
Switching capacity: 1250VA (5A / 250V AC)
If the distance between the devices is greater than 5 mm .
Fusing: $\quad 5 \mathrm{~A}$ fast acting
Mechanical life: 20×10^{6} operations
Electrical life: $\quad 2 \times 10^{5}$ operations at 1000VA resistive load
Switching frequency: max. 60/min at 100VA resistive load max. $6 / \mathrm{min}$ at 1000 VA resistive load (in accordance with IEC 60947-5-1)
Overvoltage category: III (in accordance with IEC 60664-1)
Rated surge voltage: 4kV
7. Measuring circuit

Measured variable:

AC Sinus (10 to 100 Hz)

Measuring-input voltage:
1-phase mains 40 to 415 V AC (max. 300V against ground)
terminals L1i-L2/L3
3~ 40/23 to 415/240V, terminals L1i-L2-L3
-
500 V
1-phase mains
3-phase mains
3~ 500/289V
Input resistance: $\quad \geq 1 \mathrm{M} \Omega$
Measuring-input current: 0.05 to 2A, terminals L1i-L1k
Overload capacity: 3A permanently
Input resistance: $47 \mathrm{~m} \Omega$
Switching threshold $\cos \varphi$
Max: $\quad 0.2$ to 1.0
Min: $\quad 0.1$ to 0.99
Overvoltage category: III (in accordance with IEC 60664-1)
Rated surge voltage: 4 kV
8. Accuracy

Base accuracy:
$\pm 5 \%$ (equivalent to 5% at $\cos \varphi=0.8$)
Frequency response:
Adjustment accuracy: $\quad \leq 5 \%$ (at $\cos \varphi=0.8$)
Repetition accuracy: $\quad \pm 1.8^{\circ}$ (equivalent to 1.8% at $\cos \varphi=0.8$)
Voltage influence:
Temperature influence: $\leq 0.1 \% /{ }^{\circ} \mathrm{C}$
9. Ambient conditions

Ambient temperature: -25 to $+55^{\circ} \mathrm{C}$ (in accordance with IEC 60068-1) -25 to $+40^{\circ} \mathrm{C}$ (in accordance with UL 508)
Storage temperature: -25 to $+70^{\circ} \mathrm{C}$
Transport temperature: -25 to $+70^{\circ} \mathrm{C}$
Relative humidity:
Pollution degree:
15% to 85%
(in accordance with IEC 60721-3-3 class 3K3)
Vibration resistance:
3 (in accordance with IEC 60664-1)
10 to 55 Hz 0.35 mm
(in accordance with IEC 60068-2-6)
Shock resistance: $\quad 15 \mathrm{~g} 11 \mathrm{~ms}$
(in accordance with IEC 60068-2-27)

Functions

When the supply voltage U is applied, the output relays switch into on-position (yellow LED R and LED I=0 illuminated) and the set interval of the start-up suppression (START) begins (green LED U flashes). Changes of the measured power factor $(\cos \varphi)$ during this period do not affect the state of the output relay. After the interval has expired the green LED is illuminated steadily. For all the functions the LEDs MIN and MAX are flashing alternating, when the minimum value for the measured power factor was chosen to be greater than the maximum value.

Overload monitoring (OVER, OVER+LATCH)

When the measured power factor exceeds the value adjusted at the MAX-regulator, the set interval of the tripping delay (DELAY) begins (red LED MAX flashes). After the interval has expired (red LED MAX illuminated), the output relays switch into off-position (yellow LED R not illuminated). The output relays again switch into on-position (yellow LED R illuminated), when the measured power factor falls below the value adjusted at the MIN-regulator (red LED MAX not illuminated). If the fault latch is activated (OVER+LATCH) and the measured power factor remains above the MAX-value longer than the set interval of the tripping delay, the output relays remain in the off-position even if the measured power factor falls below the value adjusted at the MIN-regulator. After resetting the failure (interrupting and re-applying the supply voltage), the output relays switch into on-position and a new measuring cycle begins with the set interval of the start-up suppression (START).

Underload monitoring (UNDER, UNDER+LATCH)

When the measured power factor falls below the value adjusted at the MIN-regulator, the set interval of the tripping delay (DELAY) begins (red LED MIN flashes). After the interval has expired (red LED MIN illuminated), the output relays switch into off-position (yellow LED R not illuminated). The output relays again switch into on-position (yellow LED R illuminated), when the measured power factor exceeds the value adjusted at the MAX-regulator. If the fault latch is activated (UNDER+LATCH) and the measured power factor remains below the MIN-value longer than the set interval of the tripping delay, the output relays remain in the off-position even if the measured power factor exceeds the value adjusted at the MAX-regulator. After resetting the failure (interrupting and re-applying the supply voltage), the output relays switch into on-position and a new measuring cycle begins with the set interval of the start-up suppression (START).

Window function (WIN, WIN+LATCH)
The output relays switch into on-position (yellow LED R illuminated) when the measured power factor exceeds the value adjusted at the MIN-regulator. When the measured power factor exceeds the value adjusted at the MAX-regulator, the set interval of the tripping delay (DELAY) begins (red LED MAX flashes). After the interval has expired (red LED MAX illuminated), the output relays switch into off-position (yellow LED R not illuminated). The output relays again switch into onposition (yellow LED R illuminated) when the measured power factor falls below the value adjusted at the MAX-regulator (red LED MAX not illuminated). When the measured power factor falls below the value adjusted at the MIN-regulator, the set interval of the tripping delay (DELAY) begins again (red LED MIN flashes). After the interval has expired (red LED MIN illuminated), the output relays switch into offposition (yellow LED R not illuminated).

If the fault latch is activated (WIN+LATCH) and the measured power factor remains below the MIN-value longer than the set interval of the tripping delay, the output relays remain in the off-position even if the measured power factor exceeds the value adjusted at the MIN-regulator. If the measured power factor remains above the MAX-value longer than the set interval of the tripping delay, the output relays remain in the off-position even if the measured power factor falls below the value adjusted at the MAX-regulator. After resetting the failure (interrupting and re-applying the supply voltage), the output relays switch into onposition and a new measuring cycle begins with the set interval of the start-up suppression (START).

Recognition of disconnected consumers
When the current flow between L1i and L1k is interrupted (yellow LED $\mathrm{I}=0$ illuminated) and no fault has been stored the output relays switch into on-position resp. remain in on-position (yellow LED R illuminated). When the current flow is restored, the measuring cycle is restarted with the set interval of the start-up suppression (START).

Connections

Connected to 3~400V mains with power module 24V AC without fault latch

Connected to 1~230V mains with power module 230V AC without fault latch

Connections

Connected to $3 \sim 400 \mathrm{~V}$ mains with power module 400 V AC and fault latch

Dimensions

